Skip to main content

Formation and Large-Scale Patterns of Filament Channels and Filaments

Part of the Astrophysics and Space Science Library book series (ASSL,volume 415)

Abstract

The properties and large-scale patterns of filament channels and filaments are considered. Initially, the global formation locations of filament channels and filaments are discussed, along with their hemispheric pattern. Next, observations of the formation of filament channels and filaments are described where two opposing views are considered. Finally, the wide range of models that have been constructed to consider the formation of filament channels and filaments over long time-scales are described, along with the origin of the hemispheric pattern of filaments.

Keywords

  • Solar Cycle
  • Flux Rope
  • Region Filament
  • Magnetic Helicity
  • Flux Emergence

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10416-4_14
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-10416-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7

Notes

  1. 1.

    ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/prominences-filaments/filaments/.

  2. 2.

    http://www.ngdc.noaa.gov/stp/solar/sgd.html.

References

  • Antiochos, S. K. (2013). Helicity condensation as the origin of coronal and solar wind structure. The Astrophysical Journal, 772, 72.

    CrossRef  ADS  Google Scholar 

  • Antiochos, S. K., Dahlburg, R. B., & Klimchuk, J. A. (1994). The magnetic field of solar prominences. The Astrophysical Journal, 420, L41.

    CrossRef  ADS  Google Scholar 

  • Archontis, V. (2008). Magnetic flux emergence in the Sun. Journal of Geophysical Research (Space Physics), 113, 3.

    Google Scholar 

  • Archontis, V., & Török, T. (2008). Eruption of magnetic flux ropes during flux emergence. Astronomy and Astrophysics, 492, L35.

    CrossRef  ADS  Google Scholar 

  • Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., & O’Shea, E. (2004). Emergence of magnetic flux from the convection zone into the corona. Astronomy and Astrophysics, 426, 1047.

    CrossRef  ADS  Google Scholar 

  • Aulanier, G., & Demoulin, P. (1998). 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astronomy and Astrophysics, 329, 1125.

    Google Scholar 

  • Babcock, H. W., & Babcock, H. D. (1955). The sun’s magnetic field, 1952–1954. The Astrophysical Journal, 121, 349.

    CrossRef  ADS  Google Scholar 

  • Benevolenskaya, E. E. (2005). The formation and evolution of complexes of activity, activity nests and the large-scale connectivity in the solar corona. In Large-scale Structures and their Role in Solar Activity (Vol. 346, p. 129).

    Google Scholar 

  • Bernasconi, P. N., Rust, D. M., & Hakim, D. (2005). Advanced automated solar filament detection and characterization code: Description, performance, and results. Solar Physics, 228, 97.

    CrossRef  ADS  Google Scholar 

  • Coffey, H. E., & Hanchett, C. D. (1998). Digital “Cartes Synoptiques de la Chromosphere Solaire et Catalogues des Filaments et des Centres d’Activite”. IAU Colloq. 167: New Perspectives on Solar Prominences, 150, 488.

    Google Scholar 

  • d’Azambuja, L., & d’Azambuja, M. (1948). Ann. Obs. Paris-Meudon, 6, 7.

    Google Scholar 

  • Deng, Y., Lin, Y., Schmieder, B., & Engvold, O. (2002). Filament activation and magnetic reconnection. Solar Physics, 209, 153.

    CrossRef  ADS  Google Scholar 

  • DeVore, C. R., & Antiochos, S. K. (2000). Dynamical formation and stability of helical prominence magnetic fields. The Astrophysical Journal, 539, 954.

    CrossRef  ADS  Google Scholar 

  • DeVore, C. R., Antiochos, S. K., & Aulanier, G. (2005). Solar prominence interactions. The Astrophysical Journal, 629, 1122.

    CrossRef  ADS  Google Scholar 

  • Engvold, O. (1998). Observations of filament structure and dynamics (Review). IAU Colloq. 167: New Perspectives on Solar Prominences, 150, 23.

    Google Scholar 

  • Fan, Y. (2009). The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. The Astrophysical Journal, 697, 1529.

    CrossRef  ADS  Google Scholar 

  • Fan, Y., & Gibson, S. E. (2004). Numerical imulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. The Astrophysical Journal, 609, 1123.

    CrossRef  ADS  Google Scholar 

  • Fan, Y., & Gibson, S. E. (2006). On the nature of the X-ray bright core in a stable filament channel. The Astrophysical Journal, 641, L149.

    CrossRef  ADS  Google Scholar 

  • Foukal, P. (1971). Morphological relationships in the chromospheric Hα fine structure. Solar Physics, 19, 59.

    CrossRef  ADS  Google Scholar 

  • Foukal, P. (1971). Hα fine structure and the chromospheric field. Solar Physics, 20, 298.

    CrossRef  ADS  Google Scholar 

  • Gaizauskas, V. (1998). Filament channels: Essential ingredients for filament formation (Review). IAU Colloq. 167: New Perspectives on Solar Prominences, 150, 257.

    Google Scholar 

  • Gaizauskas, V. (2002). Formation of a switchback during the rising phase of solar cycle 21. Solar Physics, 211, 179.

    CrossRef  ADS  Google Scholar 

  • Gaizauskas, V. (2008). Development of flux imbalances in solar activity nests and the evolution of filament channels. The Astrophysical Journal, 686, 1432.

    CrossRef  ADS  Google Scholar 

  • Gaizauskas, V., Harvey, K. L., Harvey, J. W., & Zwaan, C. (1983). Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. The Astrophysical Journal, 265, 1056.

    CrossRef  ADS  Google Scholar 

  • Gaizauskas, V., Mackay, D. H., & Harvey, K. L. (2001). Evolution of solar filament channels observed during a major poleward surge of photospheric magnetic flux. The Astrophysical Journal, 558, 888.

    CrossRef  ADS  Google Scholar 

  • Gaizauskas, V., Zirker, J. B., Sweetland, C., & Kovacs, A. (1997). Formation of a solar filament channel. The Astrophysical Journal, 479, 448.

    CrossRef  ADS  Google Scholar 

  • Galsgaard, K., & Longbottom, A. W. (1999). Formation of solar prominences by flux convergence. The Astrophysical Journal, 510, 444.

    CrossRef  ADS  Google Scholar 

  • Galsgaard, K., Archontis, V., Moreno-Insertis, F., & Hood, A. W. (2007). The effect of the relative orientation between the coronal field and new emerging flux. I. Global properties. The Astrophysical Journal, 666, 516.

    Google Scholar 

  • Gibson, S. E., & Fan, Y. (2006). Coronal prominence structure and dynamics: A magnetic flux rope interpretation. Journal of Geophysical Research (Space Physics), 111, 12103.

    CrossRef  ADS  Google Scholar 

  • Gibson, S. E., Fan, Y., Mandrini, C., Fisher, G., & Demoulin, P. (2004). Observational consequences of a magnetic flux rope emerging into the corona. The Astrophysical Journal, 617, 600.

    CrossRef  ADS  Google Scholar 

  • Hyder, C. L. (1965). The polarization of emission lines in astronomy. II. Prominence emission-line polarization and prominence magnetic fields. The Astrophysical Journal, 141, 1374.

    Google Scholar 

  • Jeong, H., Chae, J., & Moon, Y.-J. (2009). Magnetic helicity injection during the formation of an intermediate filament. Journal of Korean Astronomical Society, 42, 9.

    CrossRef  ADS  Google Scholar 

  • Karachik, N. V., & Pevtsov, A. A. (2014). Properties of magnetic neutral line gradients and formation of filaments. Solar Physics, 289, 821.

    CrossRef  ADS  Google Scholar 

  • Karpen, J. T., Antiochos, S. K., Hohensee, M., Klimchuk, J. A., & MacNeice, P. J. (2001). Are magnetic dips necessary for prominence formation? The Astrophysical Journal, 553, L85.

    CrossRef  ADS  Google Scholar 

  • Kuckein, C., Martínez Pillet, V., & Centeno, R. (2012). An active region filament studied simultaneously in the chromosphere and photosphere. II. Doppler velocities. Astronomy and Astrophysics, 539, A131.

    Google Scholar 

  • Kuijpers, J. (1997). A solar prominence model. The Astrophysical Journal, 489, L201.

    CrossRef  ADS  Google Scholar 

  • Kuperus, M. (1996). The double inverse polarity paradigm—the sign of magnetic fields in quiescent prominences. Solar Physics, 169, 349.

    CrossRef  ADS  Google Scholar 

  • Leroy, J.-L. (1989). In E. R. Priest (Ed) Dynamics and structure of quiescent solar prominences (p. 77). Dordrecht: Kluwer.

    Google Scholar 

  • Leroy, J. L., Bommier, V., & Sahal-Brechot, S. (1983). The magnetic field in the prominences of the polar crown. Solar Physics, 83, 135.

    CrossRef  ADS  Google Scholar 

  • Li, K. J. (2010). Latitude migration of solar filaments. Monthly Notices of the Royal Astronomical Society, 405, 1040.

    ADS  Google Scholar 

  • Lionello, R., Mikić, Z., Linker, J. A., & Amari, T. (2002). Magnetic field topology in prominences. The Astrophysical Journal, 581, 718.

    CrossRef  ADS  Google Scholar 

  • Lites, B. W. (2005). Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. The Astrophysical Journal, 622, 1275.

    CrossRef  ADS  Google Scholar 

  • Lites, B. W., & Low, B. C. (1997). Flux emergence and prominences: A new scenario for 3-dimensional field geometry based on observations with the advanced stokes polarimeter. Solar Physics, 174, 91.

    CrossRef  ADS  Google Scholar 

  • Lites, B. W., Kubo, M., Berger, T., et al. (2010). Emergence of helical flux and the formation of an active region filament channel. The Astrophysical Journal, 718, 474.

    CrossRef  ADS  Google Scholar 

  • Litvinenko, Y. E., & Wheatland, M. S. (2005). A simple dynamical model for filament formation in the solar corona. The Astrophysical Journal, 630, 587.

    CrossRef  ADS  Google Scholar 

  • Low, B. C. (1994). Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections, and magnetic helicity. Physics of Plasmas, 1, 1684.

    CrossRef  ADS  Google Scholar 

  • Low, B. C., & Hundhausen, J. R. (1995). Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. The Astrophysical Journal, 443, 818.

    Google Scholar 

  • Mackay, D. H., & Gaizauskas, V. (2003). Helicity as a component of filament formation. Solar Physics, 216, 121.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., & van Ballegooijen, A. A. (2001). A possible solar cycle dependence to the hemispheric pattern of filament magnetic fields? The Astrophysical Journal, 560, 445.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., & van Ballegooijen, A. A. (2005). New results in modeling the hemispheric pattern of solar filaments. The Astrophysical Journal, 621, L77.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., & van Ballegooijen, A. A. (2006). Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. The Astrophysical Journal, 641, 577.

    Google Scholar 

  • Mackay, D. H., Gaizauskas, V., Rickard, G. J., & Priest, E. R. (1997). Force-free and potential models of a filament channel in which a filament forms. The Astrophysical Journal, 486, 534.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., Priest, E. R., Gaizauskas, V., & van Ballegooijen, A. A. (1998). Role of helicity in the formation of intermediate filaments. Solar Physics, 180, 299.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., Longbottom, A. W., & Priest, E. R. (1999). Dipped magnetic field configurations associated with filaments and barbs. Solar Physics, 185, 87.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., Gaizauskas, V., & van Ballegooijen, A. A. (2000). Comparison of theory and observations of the chirality of filaments within a dispersing activity complex. The Astrophysical Journal, 544, 1122.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., Gaizauskas, V., & Yeates, A. R. (2008). Where do solar filaments form?: Consequences for theoretical models. Solar Physics, 248, 51.

    CrossRef  ADS  Google Scholar 

  • Mackay, D. H., DeVore, C. R., & Antiochos, S. K. (2014). Global-scale consequences of magnetic-helicity injection and condensation on the sun. The Astrophysical Journal, 784, 164.

    CrossRef  ADS  Google Scholar 

  • Magara, T. (2006). Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the sun. The Astrophysical Journal, 653, 1499.

    CrossRef  ADS  Google Scholar 

  • Manchester, W., IV, Gombosi, T., DeZeeuw, D., & Fan, Y. (2004). Eruption of a buoyantly emerging magnetic flux rope. The Astrophysical Journal, 610, 588.

    CrossRef  ADS  Google Scholar 

  • Martens, P. C., & Zwaan, C. (2001). Origin and evolution of filament-prominence systems. The Astrophysical Journal, 558, 872.

    CrossRef  ADS  Google Scholar 

  • Martens, P. C., Yeates, A. R., & Pillai, K. G. (2014). IAU Symposium (Vol. 300, p. 135).

    Google Scholar 

  • Martin, S. F. (1998). Conditions for the formation and maintenance of filaments (invited review). Solar Physics, 182, 107.

    CrossRef  ADS  Google Scholar 

  • Martin, S. F., Marquette, W. H., & Bilimoria, R. (1992). The solar cycle pattern in the direction of the magnetic field along the long axes of polar filaments. The Solar Cycle, 27, 53.

    ADS  Google Scholar 

  • Martin, S. F., Bilimoria, R., & Tracadas, P. W. (1994). Magnetic field configurations basic to filament channels and filaments. Solar Surface Magnetism, 433, 303.

    CrossRef  Google Scholar 

  • Martres, M. J., Michard, R., & Soru-Iscovici (1966). Étude morphologique de la structure magnétique des régions actives en relation avec les phénomènes chromosphériques et les éruptions solaires. II. Localisation des plages brillantes, filaments et éruptions. Annales d’Astrophysique, 29, 249.

    Google Scholar 

  • McIntosh, P. S. (1972). Solar magnetic fields derived from hydrogen alpha filtergrams. Reviews of Geophysics and Space Physics, 10, 837.

    CrossRef  ADS  Google Scholar 

  • Minarovjech, M., Rybansky, M., & Rusin, V. (1998). Prominences and the green corona over the solar activity cycle. Solar Physics, 177, 357.

    CrossRef  ADS  Google Scholar 

  • Mouradian, Z., & Soru-Escaut, I. (1994). A new analysis of the butterfly diagram for solar filaments.. Astronomy and Astrophysics, 290, 279.

    ADS  Google Scholar 

  • Murray, M. J., Hood, A. W., Moreno-Insertis, F., Galsgaard, K., & Archontis, V. (2006). 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astronomy and Astrophysics, 460, 909.

    CrossRef  ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., Lites, B. W., et al. (2008). Emergence of a helical flux rope under an active region prominence. The Astrophysical Journal, 673, L215.

    CrossRef  ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., Lites, B. W., et al. (2009). Prominence formation associated with an emerging helical flux rope. The Astrophysical Journal, 697, 913.

    CrossRef  ADS  Google Scholar 

  • Oliver, R., Čadež, V. M., Carbonell, M., & Ballester, J. L. (1999). Coronal potential magnetic fields from photospheric sources with finite width. Astronomy and Astrophysics, 351, 733.

    ADS  Google Scholar 

  • Pevtsov, A. A., Balasubramaniam, K. S., & Rogers, J. W. (2003). Chirality of chromospheric filaments. The Astrophysical Journal, 595, 500.

    CrossRef  ADS  Google Scholar 

  • Pevtsov, A. A., Panasenco, O., & Martin, S. F. (2012). Coronal mass ejections from magnetic systems encompassing filament channels without filaments. Solar Physics, 277, 185.

    CrossRef  ADS  Google Scholar 

  • Pintér, T., Rybanský, M., & Dorotovič, I. (2014). The polar belts of prominence occurence as an indicator of the solar magnetic field reversal. IAU Symposium (Vol. 300, p. 456).

    Google Scholar 

  • Priest, E. R., van Ballegooijen, A. A., & Mackay, D. H. (1996). A model for dextral and sinistral prominences. The Astrophysical Journal, 460, 530.

    CrossRef  ADS  Google Scholar 

  • Rust, D. M. (1967). Magnetic fields in quiescent solar prominences. I. Observations. The Astrophysical Journal, 150, 313.

    Google Scholar 

  • Rust, D. M., & Kumar, A. (1994). Helical magnetic fields in filaments. Solar Physics, 155, 69.

    CrossRef  ADS  Google Scholar 

  • Schmieder, B., Mein, N., Deng, Y., et al. (2004). Magnetic changes observed in the formation of two filaments in a complex active region: TRACE and MSDP observations. Solar Physics, 223, 119.

    CrossRef  ADS  Google Scholar 

  • Sheeley, N. R., Jr., Martin, S. F., Panasenco, O., & Warren, H. P. (2013). Using Coronal Cells to Infer the Magnetic Field Structure and Chirality of Filament Channels. The Astrophysical Journal, 772, 88.

    CrossRef  ADS  Google Scholar 

  • Shimojo, M., Yokoyama, T., Asai, A., Nakajima, H., & Shibasaki, K. (2006). One solar-cycle observations of prominence activities using the nobeyama radioheliograph 1992–2004. Publications of the Astronomical Society of Japan, 58, 85.

    CrossRef  ADS  Google Scholar 

  • Tang, F. (1987). Quiescent prominences: Where are they formed? Solar Physics, 107, 233.

    CrossRef  ADS  Google Scholar 

  • Topka, K., Moore, R., Labonte, B. J., & Howard, R. (1982). Evidence for a poleward meridional flow on the sun. Solar Physics, 79, 231.

    CrossRef  ADS  Google Scholar 

  • van Ballegooijen, A. A., & Martens, P. C. H. (1989). Formation and eruption of solar prominences. The Astrophysical Journal, 343, 971.

    CrossRef  ADS  Google Scholar 

  • van Ballegooijen, A. A., & Martens, P. C. H. (1990). Magnetic fields in quiescent prominences. The Astrophysical Journal, 361, 283.

    CrossRef  ADS  Google Scholar 

  • van Ballegooijen, A. A., Cartledge, N. P., & Priest, E. R. (1998). Magnetic flux transport and the formation of filament channels on the sun. The Astrophysical Journal, 501, 866.

    CrossRef  ADS  Google Scholar 

  • van Ballegooijen, A. A., Priest, E. R., & Mackay, D. H. (2000). Mean field model for the formation of filament channels on the sun. The Astrophysical Journal, 539, 983.

    CrossRef  ADS  Google Scholar 

  • Wang, Y.-M., & Muglach, K. (2007). On the formation of filament channels. The Astrophysical Journal, 666, 1284.

    CrossRef  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R., Jr., & Stenborg, G. (2013). Fe XII stalks and the origin of the axial field in filament channels. The Astrophysical Journal, 770, 72.

    CrossRef  ADS  Google Scholar 

  • Welsch, B. T., DeVore, C. R., & Antiochos, S. K. (2005). Magnetic reconnection models of prominence formation. The Astrophysical Journal, 634, 1395.

    CrossRef  ADS  Google Scholar 

  • Xia, C., Keppens, R., & Guo, Y. (2014). Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope. The Astrophysical Journal, 780, 130.

    CrossRef  ADS  Google Scholar 

  • Yeates, A. R., & Mackay, D. H. (2012). Chirality of high-latitude filaments over solar cycle 23. The Astrophysical Journal, 753, L34.

    CrossRef  ADS  Google Scholar 

  • Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2007). Modelling the global solar corona: Filament chirality observations and surface simulations. Solar Physics, 245, 87.

    CrossRef  ADS  Google Scholar 

  • Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2008). Modelling the global solar corona II: Coronal evolution and filament chirality comparison. Solar Physics, 247, 103.

    CrossRef  ADS  Google Scholar 

  • Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2008). Evolution and distribution of current helicity in full-sun simulations. The Astrophysical Journal, 680, L165.

    CrossRef  ADS  Google Scholar 

  • Zirker, J. B., Martin, S. F., Harvey, K., & Gaizauskas, V. (1997). Global magnetic patterns of chirality. Solar Physics, 175, 27.

    CrossRef  ADS  Google Scholar 

  • Zou, P., Li, Q.-X., & Wu, N. (2014). Non-linear analysis of the long-term behaviour of solar filaments. Monthly Notices of the Royal Astronomical Society, 437, 38.

    CrossRef  ADS  Google Scholar 

Download references

Acknowledgements

DHM would like to thank the members of the two ISSI teams on solar prominences led by Nicolas Labrosse for their stimulating discussions. In particular DHM would like to give special thanks to Vic Gaizauskas, Aad van Ballegooijen, Judy Karpen, Jose Luis Ballester, Brigitte Schmieder and Guillaume Aulanier who have all helped develop my understanding of solar prominences and aided my ability to write the present chapter. DHM would also like to thank STFC and the Leverhulme Trust for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan H. Mackay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mackay, D.H. (2015). Formation and Large-Scale Patterns of Filament Channels and Filaments. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_14

Download citation