Magnetism and Dynamics of Prominences: MHD Waves

  • José Luis BallesterEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 415)


Quiescent solar prominences are highly dynamic structures which, among other features, display oscillatory motions. The presence of these oscillations has been confirmed by means of ground- and space-based observations, and they have been classified in small and large amplitude oscillations. Since prominences are magnetized structures, the theoretical interpretation of their oscillations has been mostly done in terms of magnetohydrodynamic (MHD) waves. This interpretation has allowed the development of prominence seismology as a tool to determine prominence physical parameters (magnetic field, Alfvén speed, inhomogeneity scale, etc.) which are difficult to measure by direct means.


Magnetic Field Strength Flux Rope Magnetic Flux Tube Small Amplitude Oscillation Magnetoacoustic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter is dedicated to the memory of Josip Kleczek who woke up my interest for solar prominences.


  1. Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150, 405–406. doi:10.1038/150405d0.ADSCrossRefGoogle Scholar
  2. Arregui, I., & Ballester, J. L. (2011). Damping mechanisms for oscillations in solar prominences. Space Science Review, 158, 169–204. doi:10.1007/s11214-010-9648-9, 1002.3489.Google Scholar
  3. Arregui, I., Oliver, R., & Ballester, J. L. (2012). Prominence oscillations. Living Reviews in Solar Physics, 9, 2. doi:10.12942/lrsp-2012-2.Google Scholar
  4. Arregui, I., Ramos, A. A., & Díaz, A. J. (2014). The promise of Bayesian analysis for prominence seismology. In IAU Symposium (Vol. 300, pp. 393–394). doi:10.1017/S1743921313011241.Google Scholar
  5. Arregui, I., Terradas, J., Oliver, R., & Ballester, J. (2008). Damping of fast magnetohydrodynamic oscillations in quiescent filament threads. Astrophysical Journal Letters, 682, L141–L144. doi:10.1086/591081.ADSCrossRefGoogle Scholar
  6. Asai, A., Ishii, T. T., Isobe, H., et al. (2012). First simultaneous observation of an Hα moreton wave, EUV wave, and filament/prominence oscillations. Astrophysical Journal Letters, 745, L18. doi:10.1088/2041-8205/745/2/L18, 1112.5915.Google Scholar
  7. Ballai, I. (2003). On dissipative effects in solar prominences. Astronomy & Astrophysics, 410, L17–L19. doi:10.1051/0004-6361:20031401.ADSCrossRefGoogle Scholar
  8. Ballester, J. L. (2014). Prominence seismology. In IAU Symposium (Vol. 300, pp. 30–39). doi:10.1017/S1743921313010703.Google Scholar
  9. Berger, T., Shine, R., Slater, G., et al. (2008). Hinode SOT observations of solar quiescent prominence dynamics. Astrophysical Journal Letters, 676, L89–L92. doi:10.1086/587171.ADSCrossRefGoogle Scholar
  10. Bommier, V., Landi Degl’Innocenti, E., Leroy, J. L., & Sahal-Bréchot, S. (1994). Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the He I D3 and Hα lines. Solar Physics, 154, 231–260.ADSCrossRefGoogle Scholar
  11. Bommier, V., & Leroy, J. (1998). Global pattern of the magnetic field vector above neutral lines from 1974 to 1982: Pic-du-Midi observations of prominences. In D. Webb, B. Schmieder, & D. Rust (Eds.), New perspectives on solar prominences. ASP Conference Series (Vol. 150, pp. 434–438). San Francisco: Astronomical Society of the Pacific.Google Scholar
  12. Braginskii, S. I. (1965). Transport processes in a plasma. Reviews of Plasma Physics, 1, 205.ADSGoogle Scholar
  13. Carbonell, M., Oliver, R., & Ballester, J. (2004). Time damping of linear non-adiabatic magnetohydrodynamic waves in an unbounded plasma with solar coronal properties. Astronomy & Astrophysics, 415, 739–750. doi:10.1051/0004-6361:20034630.ADSCrossRefGoogle Scholar
  14. Carlsson, M., & Stein, R. F. (1997). Chromospheric dynamics - what can be learnt from numerical simulations. In G. M. Simnett, C. E. Alissandrakis, & L. Vlahos (Eds.), European meeting on solar physics. Lecture Notes in Physics (Vol. 489, p. 159). Berlin: Springer Verlag. doi:10.1007/BFb0105675.Google Scholar
  15. Chen, P., Innes, D., & Solanki, S. (2008). Soho/sumer observations of prominence oscillation before eruption. Astronomy & Astrophysics, 484, 487–493. doi:10.1051/0004-6361:200809544, 0802.1961.Google Scholar
  16. Cox, D. P., & Tucker, W. H. (1969). Ionization equilibrium and radiative cooling of a low-density plasma. Astrophysical Journal, 157, 1157. doi10.1086/150144.Google Scholar
  17. Dahlburg, R. B., & Mariska, J. T. (1988). Influence of heating rate on the condensational instability. Solar Physics, 117, 51–56. doi10.1007/BF00148571.Google Scholar
  18. De Pontieu, B., Martens, P., & Hudson, H. (2001). Chromospheric damping of alfvén waves. Astrophysical Journal, 558, 859–871. doi10.1086/322408.Google Scholar
  19. Díaz, A., Oliver, R., & Ballester, J. (2002). Fast magnetohydrodynamic oscillations in cylindrical prominence fibrils. Astrophysical Journal, 580, 550–565. doi:10.1086/343039.ADSCrossRefGoogle Scholar
  20. Díaz, A., Oliver, R., & Ballester, J. (2003). Fast MHD oscillations of a 3-dimensional prominence fibril. Astronomy & Astrophysics, 402, 781–789. doi:10.1051/0004-6361:20030285.ADSCrossRefGoogle Scholar
  21. Díaz, A., Oliver, R., & Ballester, J. (2005). Fast magnetohydrodynamic oscillations in a multifibril cartesian prominence model. Astronomy & Astrophysics, 440, 1167–1175. doi10.1051/0004-6361:20052759.Google Scholar
  22. Díaz, A., Oliver, R., & Ballester, J. (2010). Prominence thread seismology using the P1/2P2 ratio. Astrophysical Journal, 725, 1742–1748. doi10.1088/0004-637X/725/2/1742.Google Scholar
  23. Díaz, A., Oliver, R., Erdélyi, R., & Ballester, J. (2001). Fast MHD oscillations in prominence fine structures. Astronomy & Astrophysiocs, 379, 1083–1097. doi:10.1051/0004-6361:20011351.ADSCrossRefGoogle Scholar
  24. Díaz, A., & Roberts, B. (2006). Fast magnetohydrodynamic oscillations in a fibril prominence model. Solar Physics, 236, 111–126. doi10.1007/s11207-006-0137-y.Google Scholar
  25. Dymova, M., & Ruderman, M. (2005). Non-axisymmetric oscillations of thin prominence fibrils. Solar Physics, 229, 79–94. doi10.1007/s11207-005-5002-x.Google Scholar
  26. Edwin, P., & Roberts, B.: (1983). Wave propagation in a magnetic cylinder. Solar Physics, 88, 179–191. DOI 10.1007/BF00196186.ADSCrossRefGoogle Scholar
  27. Engvold, O. (1998). Observations of filament structure and dynamics. In D. Webb, B. Schmieder, & D. Rust (Eds.), New perspectives on solar prominences. ASP Conference Series (Vol. 150, pp. 23–31). San Francisco: Astronomical Society of the Pacific.Google Scholar
  28. Engvold, O. (2004). Structures and dynamics of solar filaments - challenges in observing and modeling. In A. V. Stepanov, E. E. Benevolenskaya & A. G. Kosovichev (Eds.), Multi-wavelength investigations of solar activity, IAU symposium (Vol. 223, pp. 187–194). doi10.1017/S1743921304005575.Google Scholar
  29. Engvold, O. (2008). Observational aspects of prominence oscillations. In R. Erdélyi & C. Mendoza-Briceño (Eds.), Waves & oscillations in the solar atmosphere: Heating and magneto-seismology, IAU symposia (Vol. 247, pp. 152–157). Cambridge/New York: Cambridge University Press. doi10.1017/S1743921308014816.Google Scholar
  30. Eto, S., Isobe, H., Narukage, N., et al. (2002). Relation between a Moreton wave and an EIT wave observed on 1997 november 4. Publications of the Astronomical Society of Japan, 54, 481–491.ADSCrossRefGoogle Scholar
  31. Forteza, P., Oliver, R., Ballester, J., & Khodachenko, M. (2007). Damping of oscillations by ion-neutral collisions in a prominence plasma. Astronomy & Astrophysics, 461, 731–739. doi:10.1051/0004-6361:20065900.ADSCrossRefGoogle Scholar
  32. Forteza, P., Oliver, R., & Ballester, J. (2008). Time damping of non-adiabatic MHD waves in an unbounded partially ionised prominence plasma. Astronomy & Astrophysics, 492, 223–231. doi:10.1051/0004-6361:200810370.ADSCrossRefGoogle Scholar
  33. Gilbert, H., Daou, A., Young, D., Tripathi, D., & Alexander, D. (2008). The filament-moreton wave interaction of 2006 December 6. Astrophysical Journal, 685, 629–645. doi10.1086/590545.Google Scholar
  34. Goedbloed, J. P. H., & Poedts, S. (2004). Principles of magnetohydrodynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Goossens, M. (2003). An introduction to plasma astrophysics and magnetohydrodynamics. Astrophysics and space science library (Vol. 294). Dordrecht/Norwell, MA: Kluwer.Google Scholar
  36. Goossens, M., Arregui, I., Ballester, J., & Wang, T. (2008). Analytic approximate seismology of transversely oscillating coronal loops. Astronomy & Astrophysics, 484, 851–857. doi:10.1051/0004-6361:200809728.ADSCrossRefGoogle Scholar
  37. Goossens, M., Erdélyi, R., & Ruderman, M. (2010). Resonant MHD waves in the solar atmosphere. Space Science Reviews. doi10.1007/s11214-010-9702-7.Google Scholar
  38. Goossens, M., Hollweg, J., & Sakurai, T. (1992). Resonant behaviour of MHD waves on magnetic flux tubes. iii. Effect of equilibrium flow. Solar Physics, 138, 233–255. doi10.1007/BF00151914.Google Scholar
  39. Goossens, M., Ruderman, M., & Hollweg, J. (1995). Dissipative MHD solutions for resonant alfven waves in 1-dimensional magnetic flux tubes. Solar Physics, 157, 75–102. doi:10.1007/BF00680610.ADSCrossRefGoogle Scholar
  40. Goossens, M., Terradas, J., Andries, J., Arregui, I., & Ballester, J. (2009). On the nature of kink MHD waves in magnetic flux tubes. Astronom & Astrophysics, 503, 213–223. doi:10.1051/0004-6361/200912399, 0905.0425.Google Scholar
  41. Harvey, J. (1969). Magnetic fields associated with solar active-region prominences. Ph.D. thesis, University of Colorado at Boulder, Boulder, CO.Google Scholar
  42. Heggland, L., Hansteen, V. H., De Pontieu, B., &Carlsson, M. (2011). Wave propagation and jet formation in the chromosphere. Astrophysical Journal, 743, 142. doi:10.1088/0004-637X/743/2/142, 1112.0037.Google Scholar
  43. Heinzel, P. (2014). Radiative transfer in solar prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 101–128). Springer.Google Scholar
  44. Heinzel, P., Zapiór, M., Oliver, R., & Ballester, J. L. (2014). Synthetic hydrogen spectra of prominence oscillations. Astronomy & Astrophysics, 562, A103. doi:10.1051/0004-6361/201322346, 1401.2131.Google Scholar
  45. Hershaw, J., Foullon, C., Nakariakov, V. M., & Verwichte, E. (2011). Damped large amplitude transverse oscillations in an EUV solar filament, triggered by large-scale transient coronal waves. Astronomy & Astrophysics, 531, A53. doi10.1051/0004-6361/201116750.Google Scholar
  46. Hildner, E. (1974). The formation of solar quiescent prominences by condensation. Solar Physics, 35, 123–136. doi:10.1007/BF00156962.ADSCrossRefGoogle Scholar
  47. Hollweg, J. V., & Yang, G. (1988). Resonance absorption of compressible magnetohydrodynamic waves at thin ‘surfaces’. Journal of Geophysical Research, 93, 5423–5436. doi:10.1029/JA093iA06p05423.ADSCrossRefGoogle Scholar
  48. Hyder, C. (1966). Winking filaments and prominence and coronal magnetic fields. Zeitschrift für Astrophysik, 63, 78–84.ADSGoogle Scholar
  49. Isobe, H., & Tripathi, D. (2006). Large amplitude oscillation of a polar crown filament in the pre-eruption phase. Astronom & Astrophysics, 449, L17–L20. doi:10.1051/0004-6361:20064942, arXiv:astro-ph/0602432.Google Scholar
  50. Isobe, H., Tripathi, D., Asai, A., & Jain, R. (2007). Large-amplitude oscillation of an erupting filament as seen in EUV, Hα, and microwave observations. Solar Physics, 246, 89–99. doi10.1007/s11207-007-9091-6, 0711.3952.Google Scholar
  51. Jing, J., Lee, J., Spirock, T., & Wang, H. (2006). Periodic motion along solar filaments. Solar Physics, 236, 97–109. doi10.1007/s11207-006-0126-1.Google Scholar
  52. Jing, J., Lee, J., Spirock, T., Xu, Y., Wang, H., & Choe, G. (2003). Periodic motion along a solar filament initiated by a subflare. Astrophysical Journal Letters, 584, L103–L106. doi10.1086/373886.Google Scholar
  53. Joarder, P., & Roberts, B. (1992a). The modes of oscillation of a prominence. i. The slab with longitudinal magnetic field. Astronomy & Astrophysics, 256, 264–272.Google Scholar
  54. Joarder, P., & Roberts, B. (1992b). The modes of oscillation of a prominence. ii - The slab with transverse magnetic field. Astronomy & Astrophysics, 261, 625–632.Google Scholar
  55. Joarder, P., & Roberts, B. (1993a). The modes of oscillation of a prominence. iii. The slab in a skewed magnetic field. Astronomy & Astrophysics, 277, 225–234.Google Scholar
  56. Joarder, P. S., & Roberts, B. (1993b). The modes of oscillation of a Menzel prominence. Astronom & Astrophysics, 273, 642–646.ADSGoogle Scholar
  57. Kleczek, J., & Kuperus, M. (1969). Oscillatory phenomena in quiescent prominences. Solar Physics, 6, 72–79. doi10.1007/BF00146797.Google Scholar
  58. Klimchuk, J. A., & Cargill, P. J. (2001). Spectroscopic diagnostics of nanoflare-heated loops. Astrophysical Journal, 553, 440–448. doi10.1086/320666.Google Scholar
  59. Krishan, V., & Varghese, B. A. (2008). Cylindrical Hall - MHD waves: A nonlinear solution. Solar Physics, 247, 343–349. doi10.1007/s11207-008-9117-8.Google Scholar
  60. Landman, D., Edberg, S., & Laney, C. (1977). Measurements of Hβ, He D3, and Ca+ λ8542 line emission in quiescent prominences. Astrophysical Journal, 218, 888–897. doi:10.1086/155744.ADSCrossRefGoogle Scholar
  61. Leroy, J. L. (1980). Mass balance and magnetic structure in quiescent prominences. In F. Moriyama & J. Henoux (Eds.), Proceedings of the Japan-France seminar on solar physics (p. 155). Tokyo, Nihon Gakujutsu Shinkokai and CNRS.Google Scholar
  62. Leroy, J. L. (1988). Observations of prominence magnetic field. In J. Ballester & E. Priest (Eds.), Dynamics and structure of solar prominences, Universitat de les Illes Balears, Palma de Mallorca, Conferències i comunicacions (Vol. 5, pp. 33–40).Google Scholar
  63. Leroy, J. L. (1989). Observation of prominence magnetic fields. In E. Priest (Ed.), Dynamics and structure of quiescent solar prominences (Vol. 150, pp. 77–113). Dordrecht/Boston: Kluwer/Astrophysics and Space Science Library.CrossRefGoogle Scholar
  64. Li, T., & Zhang, J. (2012). SDO/AIA observations of large-amplitude longitudinal oscillations in a solar filament. Astrophysical Journal Letters, 760, L10. doi:10.1088/2041-8205/760/1/L10, 1210.5110.Google Scholar
  65. Lighthill, M. J. (1960). Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Royal Society of London Philosophical Transactions Series A, 252, 397–430. doi10.1098/rsta.1960.0010.Google Scholar
  66. Lin, Y. (2004). Magnetic field topology inferred from studies of fine threads in solar filaments. Ph.D. thesis, University of Oslo, Oslo.Google Scholar
  67. Lin, Y., Engvold, O., Rouppe van der Voort, L., & van Noort, M. (2007). Evidence of traveling waves in filament threads. Solar Physics, 246, 65–72. doi10.1007/s11207-007-0402-8.Google Scholar
  68. Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J., & Berger, T. (2005). Thin threads of solar filaments. Solar Physics, 226, 239–254. doi:10.1007/s11207-005-6876-3.ADSCrossRefGoogle Scholar
  69. Lin, Y., Martin, S., & Engvold, O. (2008). Filament substructures and their interrelation. In R., Howe, R. Komm, K. Balasubramaniam, & G. Petrie (Eds.), Subsurface and atmospheric influences on solar activity. ASP Conference Series (Vol. 383, pp. 235–242). San Francisco: Astronomical Society of the Pacific.Google Scholar
  70. Lin, Y., Soler, R., Engvold, O., Ballester, J., Langangen, Ø., Oliver, R., & Rouppe van der Voort, L. (2009). Swaying threads of a solar filament. Astrophysical Journal, 704, 870–876. doi10.1088/0004-637X/704/1/870.Google Scholar
  71. Luna, M., Díaz, A. J., & Karpen, J. (2012). The effects of magnetic-field geometry on longitudinal oscillations of solar prominences. Astrophysical Journal, 757, 98. doi:10.1088/0004-637X/757/1/98, 1207.6358.Google Scholar
  72. Luna, M., & Karpen, J. (2012). Large-amplitude longitudinal oscillations in a solar filament. Astrophysical Journal Letters, 750, L1. doi:10.1088/2041-8205/750/1/L1, 1203.5027.Google Scholar
  73. Luna, M., Knizhnik, K., Muglach, K., et al. (2014). Observations and implications of large-amplitude longitudinal oscillations in a solar filament. Astrophysical Journal, 785, 79. doi:10.1088/0004-637X/785/1/79, 1403.0381.Google Scholar
  74. Martin, S., Lin, Y., & Engvold, O. (2008). A method of resolving the 180-degree ambiguity by employing the chirality of solar features. Solar Physics, 250, 31–51. DOI 10.1007/s11207-008-9194-8.ADSCrossRefGoogle Scholar
  75. Milne, A. M., Priest, E. R., & Roberts, B. (1979). A model for quiescent solar prominences. Astrophysical Journal, 232, 304–317. DOI 10.1086/157290.ADSCrossRefGoogle Scholar
  76. Molowny-Horas, R., Baudin, F., Oliver, R., & Ballester, J. (1998), He I 10830 Å Doppler oscillations in a solar filament. In R. Donahue & J. Bookbinder (Eds.), Cool stars, stellar systems, and the sun. ASP Conference Series (Vol. 154, pp. 650–657). San Francisco: Astronomical Society of the Pacific.Google Scholar
  77. Molowny-Horas, R., Oliver, R., Ballester, J., & Baudin, F. (1997). Observations of Doppler oscillations in a solar prominence. Solar Physics, 172, 181–188.ADSCrossRefGoogle Scholar
  78. Molowny-Horas, R., Wiehr, E., Balthasar, H., Oliver, R., & Ballester, J. (1999). Prominence Doppler oscillations. In A. Antalová, H. Balthasar, & A. Kučera (Eds.), JOSO annual report 1998 (pp. 126–127). Tatranská Lomnica, Slovakia: Astronomical Institute of Slovak Academy of Sciences.Google Scholar
  79. Moreton, G. E., & Ramsey, H. E. (1960). Recent observations of dynamical phenomena associated with solar flares. Publications of the Astronomical Society of the Pacific, 72, 357. doi10.1086/127549.Google Scholar
  80. Ning, Z., Cao, W., & Goode, P. (2009a). Behavior of the spines in a quiescent prominence observed by Hinode/SOT. Astrophysical Journal, 707, 1124–1130. doi:10.1088/0004-637X/707/2/1124.ADSCrossRefGoogle Scholar
  81. Ning, Z., Cao, W., Okamoto, T., Ichimoto, K., & Qu, Z. (2009b). Small-scale oscillations in a quiescent prominence observed by Hinode/SOT. Astronomy & Astrophysics, 499, 595–600. doi10.1051/0004-6361/200810853.Google Scholar
  82. Okamoto, T., Nakai, H., Keiyama, A., et al. (2004). Filament oscillations and moreton waves associated with EIT waves. Astrophysical Journal, 608, 1124–1132. doi10.1086/420838.Google Scholar
  83. Okamoto, T., Tsuneta, S., Berger, T., et al. (2007). Coronal transverse magnetohydrodynamic waves in a solar prominence. Science, 318, 1577–1580. doi10.1126/science.1145447.Google Scholar
  84. Oliver, R., & Ballester, J. (1995). Magnetohydrodynamic waves in a bounded inhomogeneous medium with prominence-corona properties. Astrophysical Journal, 448, 444–458. doi10.1086/175975.Google Scholar
  85. Oliver, R., & Ballester, J. (1996). The influence of the temperature profile on the magnetohydrodynamic modes of a prominence-corona system. Astrophysical Journal, 456, 393–398. doi10.1086/176661.Google Scholar
  86. Oliver, R., & Ballester, J. (2002). Oscillations in quiescent solar prominences observations and theory (invited review). Solar Physics, 206, 45–67. doi10.1023/A:1014915428440.Google Scholar
  87. Oliver, R., Ballester, J., Hood, A., & Priest, E. (1992). Magnetohydrodynamic waves in a solar prominence. Astrophysical Journal, 400, 369–379. doi:10.1086/172003.ADSCrossRefGoogle Scholar
  88. Oliver, R., Ballester, J., Hood, A., & Priest, E. (1993). Oscillations of a quiescent solar prominence embedded in a hot corona. Astrophysical Journal, 409, 809–821. doi:10.1086/172711.ADSCrossRefGoogle Scholar
  89. Pandey, B., & Wardle, M. (2008). Hall magnetohydrodynamics of partially ionized plasmas. Monthly Notices of the Royal Astronomiocal Society, 385, 2269–2278. doi:10.1111/j.1365-2966.2008.12998.x, 0707.2688.Google Scholar
  90. Parenti, S., & Vial, J. C. (2007.) Prominence and quiet-sun plasma parameters derived from FUV spectral emission. Astronomy & Astrophysics, 469, 1109–1115. doi:10.1051/0004-6361:20077196.ADSCrossRefGoogle Scholar
  91. Parker, E. N. (1953). Instability of thermal fields. Astrophysical Journal, 117, 431. doi:10.1086/145707.ADSCrossRefGoogle Scholar
  92. Pintér, B., Jain, R., Tripathi, D., & Isobe, H. (2008). Prominence seismology: Wavelet analysis of filament oscillations. Astrophysical Journal, 680, 1560–1568. doi:10.1086/588273.ADSCrossRefGoogle Scholar
  93. Pinto, C., & Galli, D. (2008). Three-fluid plasmas in star formation. II. Momentum transfer rate coefficients. Astronomy & Astrophysics, 492, 1–1. doi:10.1051/0004-6361:20078819e.Google Scholar
  94. Pouget, G., Bocchialini, K., & Solomon, J. (2006). Oscillations in a solar filament: First observation of long periods in the He I 584.33 Å line, modelling and diagnostic. Astronomy & Astrophysics, 450, 1189–1198. doi:10.1051/0004-6361:20053886.Google Scholar
  95. Priest, E. R. (2014). Magnetohydrodynamics of the sun. Cambridge: Cambridge University Press.Google Scholar
  96. Ramsey, H., & Smith, S. (1966). Flare-initiated filament oscillations. Astronomical Journal, 71, 197–199. doi10.1086/109903.Google Scholar
  97. Régnier, S., Solomon, J., & Vial, J. (2001). Oscillations in an active region filament: Observations and comparison with MHD waves. Astronomy & Astrophysics, 376, 292–301. doi:10.1051/0004-6361:20010972.ADSCrossRefGoogle Scholar
  98. Roberts, B., Edwin, P., & Benz, A. (1984). On coronal oscillations. Astrophysical Journal, 279, 857–865.ADSCrossRefGoogle Scholar
  99. Roberts, B., & Joarder, P. (1994). Oscillations in quiescent prominences. In G., Belvedere, M. Rodono, & G. Simnett (Eds.), Advances in solar physics. Lecture Notes in Physics (Vol. 432, pp. 173–178). Berlin: Springer. DOI 10.1007/3-540-58041-7215.Google Scholar
  100. Rosenberg, H. (1970). Evidence for MHD pulsations in the solar corona. Astronomy & Astrophysics, 9, 159.ADSGoogle Scholar
  101. Rosner, R., Golub, L., Coppi, B., & Vaiana, G. S. (1978). Heating of coronal plasma by anomalous current dissipation. Astrophysical Journal, 222, 317–332. doi:10.1086/156145.ADSCrossRefGoogle Scholar
  102. Ruderman, M., & Roberts, B. (2002). The damping of coronal loop oscillations. Astrophysical Journal, 577, 475–486. doi10.1086/342130.Google Scholar
  103. Sakurai, T., Goossens, M., & Hollweg, J. V. (1991a). Resonant behaviour of magnetohydrodynamic waves on magnetic flux tubes - part two. Solar Physics, 133, 247–262. doi10.1007/BF00149889.Google Scholar
  104. Sakurai, T., Goossens, M., & Hollweg, J. V. (1991b). Resonant behaviour of MHD waves on magnetic flux tubes. I - connection formulae at the resonant surfaces. Solar Physics, 133, 227–245. doi:10.1007/BF00149888.Google Scholar
  105. Schure, K. M., Kosenko, D., Kaastra, J. S., Keppens, R., & Vink, J. (2009). A new radiative cooling curve based on an up-to-date plasma emission code. Astronomy & Astrophysics, 508, 751–757. doi:10.1051/0004-6361/200912495, 0909.5204.Google Scholar
  106. Soler, R. (2010). Damping of magnetohydrodynamic waves in solar prominence fine structures. Ph.D. thesis, Departament de Fisica, Universitat de les Illes Balears.Google Scholar
  107. Soler, R., Arregui, I., Oliver, R., & Ballester, J. (2010). Seismology of standing kink oscillations of solar prominence fine structures. Astrophysical Journal, 722, 1778–1792. doi:10.1088/0004-637X/722/2/1778, 1007.1959.Google Scholar
  108. Soler, R., Ballester, J. L., & Parenti, S. (2012a). Stability of thermal modes in cool prominence plasmas. Astronomy & Astrophysics, 540, A7. doi:10.1051/0004-6361/201118492, 1201.4668.Google Scholar
  109. Soler, R., & Goossens, M. (2011). Kink oscillations of flowing threads in solar prominences. Astronomy & Astrophysics, 531. doi10.1051/0004-6361/201116536, 1106.3937.Google Scholar
  110. Soler, R., Goossens, M., Terradas, J., & Oliver, R. (2013). The behavior of transverse waves in nonuniform solar flux tubes. I. Comparison of ideal and resistive results. Astrophysical Journal, 777, 158. doi10.1088/0004-637X/777/2/158, 1309.3423.Google Scholar
  111. Soler, R., Oliver, R., & Ballester, J. (2007). The effect of the solar corona on the attenuation of small-amplitude prominence oscillations. I. Longitudinal magnetic field. Astronomy & Astrophysics, 471, 1023–1033. doi:10.1051/0004-6361:20077633, arXiv:0704.1566.Google Scholar
  112. Soler, R., Oliver, R., & Ballester, J. (2008). Nonadiabatic magnetohydrodynamic waves in a cylindrical prominence thread with mass flow. Astrophysical Journal, 684, 725–735. doi:10.1086/590244, 0803.2600.Google Scholar
  113. Soler, R., Oliver, R., & Ballester, J. (2009a). Magnetohydrodynamic waves in a partially ionized filament thread. Astrophysical Journal, 699, 1553–1562. doi:10.1088/0004-637X/699/2/1553, 0904.3013.Google Scholar
  114. Soler, R., Oliver, R., & Ballester, J. (2009b). Propagation of nonadiabatic magnetoacoustic waves in a threaded prominence with mass flows. Astrophysical Journal, 693, 1601–1609. doi:10.1088/0004-637X/693/2/1601, 0809.4765.Google Scholar
  115. Soler, R., Oliver, R., & Ballester, J. (2009c). Resonantly damped kink magnetohydrodynamic waves in a partially ionized filament thread. Astrophysical Journal, 707, 662–670. doi:10.1088/0004-637X/707/1/662, 0909.3599.Google Scholar
  116. Soler, R., Oliver, R., Ballester, J., & Goossens, M. (2009d). Damping of filament thread oscillations: Effect of the slow continuum. Astrophysical Journal Letters, 695, L166–L170. doi:10.1088/0004-637X/695/2/L166, 0902.0572.Google Scholar
  117. Soler, R., Ruderman, M. S., & Goossens, M. (2012b). Damped kink oscillations of flowing prominence threads. Astronomy & Astrophysics, 546, A82. doi:10.1051/0004-6361/201220111, 1209.3382.Google Scholar
  118. Spitzer, L. (1962). Physics of fully ionized gases. New York: Interscience.Google Scholar
  119. Suematsu, Y., Yoshinaga, R., Terao, N., & Tsubaki, T. (1990). Oscillatory and transient features detected simultaneously in the Ca II K and Hβ line spectra of a quiescent prominence. Publications of the Astronomical Society of Japan, 42, 187–203.ADSGoogle Scholar
  120. Tandberg-Hanssen, E. (1974). Solar prominences (Vol. 12). Dordrecht: D. Reidel Publishing Co.Google Scholar
  121. Tandberg-Hanssen, E. (1995). The nature of solar prominences. Astrophysics and space science library (Vol. 199). Dordrecht/Boston: Kluwer.Google Scholar
  122. Terradas, J., Andries, J., & Goossens, M. (2007). On the excitation of leaky modes in cylindrical loops. Solar Physics, 246, 231–242. doi:10.1007/s11207-007-9067-6.ADSCrossRefGoogle Scholar
  123. Terradas, J., Arregui, I., Oliver, R., & Ballester, J. (2008). Transverse oscillations of flowing prominence threads observed with hinode. Astrophysical Journal Letters, 678, L153–L156. doi:10.1086/588728.ADSCrossRefGoogle Scholar
  124. Terradas, J., Carbonell, M., Oliver, R., & Ballester, J. (2005). Time damping of linear non-adiabatic magnetoacoustic waves in a slab-like quiescent prominence. Astronomy & Astrophysics, 434, 741–749. doi:10.1051/0004-6361:20041984.ADSCrossRefGoogle Scholar
  125. Terradas, J., & Goossens, M. (2012). Transverse kink oscillations in the presence of twist. Astronomy & Astrophysics, 548, A112. doi:10.1051/0004-6361/201219934, 1210.8093.Google Scholar
  126. Terradas, J., Molowny-Horas, R., Wiehr, E., Balthasar, H., Oliver, R., & Ballester, J. (2002). Two-dimensional distribution of oscillations in a quiescent solar prominence. Astronomy & Astrophysics, 393, 637–647. doi:10.1051/0004-6361:20020967.ADSCrossRefGoogle Scholar
  127. Terradas, J., Oliver, R., & Ballester, J. (2001). Radiative damping of quiescent prominence oscillations. Astronomy & Astrophysics, 378, 635–652. doi:10.1051/0004-6361:20011148.ADSCrossRefGoogle Scholar
  128. Thompson, W., & Schmieder, B. (1991). Oscillations in Hα filaments: Center-to-limb study. Astronomy & Astrophysics, 243, 501–511.ADSGoogle Scholar
  129. Tripathi, D., Isobe, H., & Jain, R. (2009). Large amplitude oscillations in prominences. Space Science Reviews, 149, 283–298. doi:10.1007/s11214-009-9583-9, 0910.4059.Google Scholar
  130. Tsubaki, T., & Takeuchi, A. (1986). Periodic oscillations found in the velocity field of a quiescent prominence. Solar Physics, 104, 313–320. doi:10.1007/BF00159084.ADSCrossRefGoogle Scholar
  131. Tsubaki, T., Toyoda, M., Suematsu, Y., & Gamboa, G. (1988). New evidence for oscillatory motions in a quiescent prominence. Publications of the Astronomical Society of Japan, 40, 121–126.ADSGoogle Scholar
  132. Uchida, Y. (1970). Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publications of the Astronomical Society of Japan, 22, 341–364.ADSGoogle Scholar
  133. Vial, J. C. (1998). Solar prominence diagnostics (review). In D. F. Webb, B. Schmieder, & D. M. Rust (Eds.), IAU colloq. 167: New perspectives on solar prominences. Astronomical Society of the Pacific Conference Series (Vol. 150, p. 175). San Francisco: Astronomical Society of the Pacific.Google Scholar
  134. Vršnak, B., Veronig, A., Thalmann, J., & Žic, T. (2007). Large amplitude oscillatory motion along a solar filament. Astronomy & Astrophysics, 471, 295–299. doi:10.1051/0004-6361:20077668, 0707.1752.Google Scholar
  135. Wiehr, E., Balthasar, H., & Stellmacher, G. (1989). Doppler velocity oscillations in quiescent prominences. Hvar Observatory Bulletin, 13,131–135.ADSGoogle Scholar
  136. Yi, Z., Engvold, O., & Keil, S. (1991). Structure and oscillations in quiescent filaments from observations in He I 10830 Å. Solar Physics, 132, 63–80.ADSCrossRefGoogle Scholar
  137. Zaqarashvili, T. V., Khodachenko, M. L., & Rucker, H. O. (2011). Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astronomy & Astrophysics, 529, A82. doi:10.1051/0004-6361/201016326, 1101.3913.Google Scholar
  138. Zhang, Q. M., Chen, P. F., Xia, C., Keppens, R., & Ji, H. S. (2013). Parametric survey of longitudinal prominence oscillation simulations. Astronomy & Astrophysics, 554, A124. doi:10.1051/0004-6361/201220705, 1304.3798.Google Scholar
  139. Zirker, J., Engvold, O., & Martin, S. (1998). Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature, 396, 440–441. doi:10.1038/24798.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departament de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations