Tagged Template Deformation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


Model-based approaches are very popular for medical image segmentation as they carry useful prior information on the target structure. Among them, the implicit template deformation framework recently bridged the gap between the efficiency and flexibility of level-set region competition and the robustness of atlas deformation approaches. This paper generalizes this method by introducing the notion of tagged templates. A tagged template is an implicit model in which different subregions are defined. In each of these subregions, specific image features can be used with various confidence levels. The tags can be either set manually or automatically learnt via a process also hereby described. This generalization therefore greatly widens the scope of potential clinical application of implicit template deformation while maintaining its appealing algorithmic efficiency. We show the great potential of our approach in myocardium segmentation of ultrasound images.


Ground Truth Random Forest Regularization Term Appearance Model Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arfken, G.B., Weber, H.J., Ruby, L.: Mathematical methods for physicists, vol. 6. Academic Press, NY (1985)Google Scholar
  2. 2.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  4. 4.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. International Journal of Computer Vision 72(2), 195–215 (2007)CrossRefGoogle Scholar
  5. 5.
    Cremers, D., Sochen, N., Schnr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 388–400. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Dietenbeck, T., Alessandrini, M., Barbosa, D., D’hooge, J., Friboulet, D., Bernard, O.: Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. MIA 16(2), 386–401 (2012)Google Scholar
  8. 8.
    Gauriau, R., Cuingnet, R., Prevost, R., Mory, B., Ardon, R., Lesage, D., Bloch, I.: A generic, robust and fully-automatic workflow for 3D CT liver segmentation. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds.) Abdominal Imaging 2013. LNCS, vol. 8198, pp. 241–250. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Huang, X., Li, Z., Metaxas, D.: Learning coupled prior shape and appearance models for segmentation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 60–69. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero crossings as optimal edge integrators. International Journal of Computer Vision 53(3), 225–243 (2003)CrossRefGoogle Scholar
  11. 11.
    Leventon, M.E., Faugeras, O., Grimson, W.E.L., Wells III, W.M.: Level set based segmentation with intensity and curvature priors. In: Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 4–11. IEEE (2000)Google Scholar
  12. 12.
    Mory, B., Somphone, O., Prevost, R., Ardon, R.: Real-time 3D image segmentation by user-constrained template deformation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 561–568. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Prevost, R., Mory, B., Correas, J.M., Cohen, L.D., Ardon, R.: Kidney detection and real-time segmentation in 3D contrast-enhanced ultrasound images. In: Proceedings of IEEE ISBI 2012, pp. 1559–1562 (2012)Google Scholar
  14. 14.
    Prevost, R., Cuingnet, R., Mory, B., Cohen, L.D., Ardon, R.: Incorporating shape variability in image segmentation via implicit template deformation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 82–89. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Saddi, K., Chefd’hotel, C., Rousson, M., Cheriet, F.: Region-based segmentation via non-rigid template matching. In: Proceedings of ICCV, pp. 1–7 (2007)Google Scholar
  16. 16.
    Wolz, R., Chu, C., Misawa, K., Mori, K., Rueckert, D.: Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 10–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Philips Research MedisysSuresnesFrance
  2. 2.CEREMADE UMR 7534, Universite Paris DauphineParisFrance

Personalised recommendations