Multi-atlas Spectral PatchMatch: Application to Cardiac Image Segmentation

  • Wenzhe Shi
  • Herve Lombaert
  • Wenjia Bai
  • Christian Ledig
  • Xiahai Zhuang
  • Antonio Marvao
  • Timothy Dawes
  • Declan O’Regan
  • Daniel Rueckert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


The automatic segmentation of cardiac magnetic resonance images poses many challenges arising from the large variation between different anatomies, scanners and acquisition protocols. In this paper, we address these challenges with a global graph search method and a novel spectral embedding of the images. Firstly, we propose the use of an approximate graph search approach to initialize patch correspondences between the image to be segmented and a database of labelled atlases. Then, we propose an innovative spectral embedding using a multi-layered graph of the images in order to capture global shape properties. Finally, we estimate the patch correspondences based on a joint spectral representation of the image and atlases. We evaluated the proposed approach using 155 images from the recent MICCAI SATA segmentation challenge and demonstrated that the proposed algorithm significantly outperforms current state-of-the-art methods on both training and test sets.


Cardiac Magnetic Resonance Image Ground Truth Segmentation Spectral Graph Theory Label Fusion Global Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)CrossRefGoogle Scholar
  2. 2.
    Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)CrossRefGoogle Scholar
  3. 3.
    Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. Neuroimage 46(3), 726–738 (2009)CrossRefGoogle Scholar
  4. 4.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  5. 5.
    Thirion, J.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  6. 6.
    Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Transactions on Medical Imaging 30(10), 1852–1862 (2011)CrossRefGoogle Scholar
  7. 7.
    Coupé, P., Manjķn, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  8. 8.
    Asman, A.J., Landman, B.A.: Non-local statistical label fusion for multi-atlas segmentation. Medical Image Analysis 17(2), 194–208 (2013)CrossRefGoogle Scholar
  9. 9.
    Wang, H., Suh, J., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(3), 611–623 (2013)CrossRefGoogle Scholar
  10. 10.
    Liao, S., Gao, Y., Lian, J., Shen, D.: Sparse patch-based label propagation for accurate prostate localization in CT images. IEEE Transactions on Medical Imaging 32(2), 419–434 (2013)CrossRefGoogle Scholar
  11. 11.
    Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images. IEEE Transactions on Medical Imaging 32(7), 1302–1315 (2013)CrossRefGoogle Scholar
  12. 12.
    Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchMatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Shi, W., et al.: Cardiac image super-resolution with global correspondence using multi-atlas patchMatch. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 9–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Chung, F.R.: Spectral graph theory, vol. 92. AMS Bookstore (1997)Google Scholar
  16. 16.
    Lombaert, H., Grady, L., Pennec, X., Ayache, N., Cheriet, F.: Spectral log-demons: Diffeomorphic image registration with very large deformations. International Journal of Computer Vision (2013)Google Scholar
  17. 17.
    Fonseca, C., Backhaus, M., Bluemke, D., Britten, R., Do Chung, J., Cowan, B., Dinov, I., Finn, J., Hunter, P., Kadish, A., et al.: The cardiac atlas project: an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRefGoogle Scholar
  18. 18.
    Andrew, A., Alireza, A.A., Hongzhi, W., Brian, A., Simon, K.W., Bennett, L.: MICCAI 2013 segmentation algorithms, theory and applications (SATA) challenge results summary (2013)Google Scholar
  19. 19.
    Nyúl, L., Udupa, J., et al.: On standardizing the MR image intensity scale. Magnetic Resonance in Medicine 42(6), 1072 (1999)CrossRefGoogle Scholar
  20. 20.
    Lin, X., Cowan, B.R., Young, A.A.: Automated detection of left ventricle in 4D MR images: Experience from a large study. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 728–735. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wenzhe Shi
    • 1
  • Herve Lombaert
    • 3
  • Wenjia Bai
    • 1
  • Christian Ledig
    • 1
  • Xiahai Zhuang
    • 2
  • Antonio Marvao
    • 1
  • Timothy Dawes
    • 1
  • Declan O’Regan
    • 1
  • Daniel Rueckert
    • 1
  1. 1.Biomedical Image Analysis GroupImperial College LondonUK
  2. 2.Shanghai Advanced Research InstituteChinese Academy of SciencesChina
  3. 3.INRIA, Asclepios Project-TeamSophia-AntipolisFrance

Personalised recommendations