Abstract
Cell detection and segmentation in microscopy images is important for quantitative high-throughput experiments. We present a learning-based method that is applicable to different modalities and cell types, in particular to cells that appear almost transparent in the images. We first train a classifier to detect (partial) cell boundaries. The resulting predictions are used to obtain superpixels and a weighted region adjacency graph. Here, edge weights can be either positive (attractive) or negative (repulsive). The graph partitioning problem is then solved using correlation clustering segmentation. One variant we newly propose here uses a length constraint that achieves state-of-art performance and improvements in some datasets. This constraint is approximated using non-planar correlation clustering. We demonstrate very good performance in various bright field and phase contrast microscopy experiments.
Chapter PDF
Similar content being viewed by others
References
Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic Image Segmentation with Closedness Constraints. In: ICCV (2011)
Andres, B., Yarkony, J., Manjunath, B.S., Kirchhoff, S., Turetken, E., Fowlkes, C.C., Pfister, H.: Segmenting Planar Superpixel Adjacency Graphs w.r.t. Non-planar Superpixel Affinity Graphs. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 266–279. Springer, Heidelberg (2013)
Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to Detect Cells Using Non-overlapping Extremal Regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012)
Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal Coalition Structure Generation in Cooperative Graph Games. In: AAAI (2013)
Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N., Rother, C.: A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems. In: CVPR (2013)
Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-Order Correlation Clustering for Image Segmentation. In: NIPS (2011)
Kvarnstrom, M., Logg, K., Diez, A., Bodvard, K., Kall, M.: Image Analysis Algorithms for Cell Contour Recognition in Budding Yeast. Opt. Express 16(17), 1035–1042 (2008)
Mayer, C., Dimopoulos, S., Rudolf, F., Stelling, J.: Using CellX to Quantify Intracellular Events. Curr. Protoc. Mol. Biol., Chapter 14, Unit 14.22 (2013)
Peng, J.Y., Chen, Y.J., Green, M.D., Sabatinos, S.A., Forsburg, S.L., Hsu, C.N.: PombeX: Robust Cell Segmentation for Fission Yeast Transillumination Images. PLoS One 8(12), e81434 (2013)
Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A.: Ilastik: Interactive Learning and Segmentation Toolkit. In: ISBI (2011)
Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast Planar Correlation Clustering for Image Segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, C., Yarkony, J., Hamprecht, F.A. (2014). Cell Detection and Segmentation Using Correlation Clustering. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014. MICCAI 2014. Lecture Notes in Computer Science, vol 8673. Springer, Cham. https://doi.org/10.1007/978-3-319-10404-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-10404-1_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10403-4
Online ISBN: 978-3-319-10404-1
eBook Packages: Computer ScienceComputer Science (R0)