Skip to main content

Completing SBGN-AF Networks by Logic-Based Hypothesis Finding

  • Conference paper
Formal Methods in Macro-Biology (FMMB 2014)


This study considers formal methods for finding unknown interactions of incomplete molecular networks using microarray profiles. In systems biology, a challenging problem lies in the growing scale and complexity of molecular networks. Along with high-throughput experimental tools, it is not straightforward to reconstruct huge and complicated networks using observed data by hand. Thus, we address the completion problem of our target networks represented by a standard markup language, called SBGN (in particular, Activity Flow). Our proposed method is based on logic-based hypothesis finding techniques; given an input SBGN network and its profile data, missing interactions can be logically generated as hypotheses by the proposed method. In this paper, we also show empirical results that demonstrate how the proposed method works with a real network involved in the glucose repression of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Akutsu, T., Tamura, T., Horimoto, K.: Completing networks using observed data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS (LNAI), vol. 5809, pp. 126–140. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Christensen, T.S., Oliveira, A.P., Nielsen, J.: Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Systems Biology 3 (2009), doi:10.1186/1752-0509-3-7

    Google Scholar 

  3. Demolombe, R., Farinas del Cerro, L., Obeid, N.: A logical model for metabolic networks with inhibition. In: Proc. of Int. Conf. on Bioinformatics and Computational Biology (2013)

    Google Scholar 

  4. Doncescu, A., Inoue, K., Pradine, A.: MicroRNA analysis by hypothesis finding technique. In: Late breaking Papers from the 22nd Int. Conf. on Inductive Logic Programming (ILP 2012), CEUR, vol. 975, pp. 26–37 (2013)

    Google Scholar 

  5. Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Inoue, K., Doncescu, A., Nabeshima, H.: Completing causal networks by meta-level abduction. Machine Learning 91, 239–277 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iwanuma, K., Inoue, K., Satoh, K.: Completeness of pruning methods for consequence finding procedure SOL. In: Proc. of the 3rd worksh. on First-order Theorem Proving (FTP 2000), pp. 89–100 (2000)

    Google Scholar 

  8. Karlebach, G., Shamir, R.: Constructing logical models of gene regulatory networks by integrating transcription factor-DNA interactions with expression data: an entropy-based approach. Computational Biology 19, 30–41 (2012)

    Article  MathSciNet  Google Scholar 

  9. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proc. of the 25th Conf. on Uncertainty in Artificial Intelligence (UAI), pp. 303–312 (2009)

    Google Scholar 

  10. Rougny, A., Froidevaux, C., Yamamoto, Y., Inoue, K.: Translating the SBGN-AF language into logics to analyze signalling networks. In: Proc. of Int. Worksh. on LNMR, CORR, vol. 975, pp. 53–64 (2013)

    Google Scholar 

  11. Rougny, A., Froidevaux, C., Yamamoto, Y., Inoue, K.: Analyzing SBGN-AF networks using normal logic programs. In: Inoue, K., Farinas, L. (eds.) Logical Modeling of Biological Systems, IStE-Ltd. (to appear, 2014)

    Google Scholar 

  12. Le Novére, N., et al.: The systems biology graphical notation. Nature Biotechnology 27, 735–741 (2009)

    Article  Google Scholar 

  13. Lewis, D.: Causation as influence. Philosophy 97, 182–197 (2000)

    Google Scholar 

  14. Mi, H., Schreiber, F., Le Novére, N., Moodie, S., Sorokin, A.: Systems biology graphical notation: activity flow language level 1. Nature Proceedings, 713 (2009)

    Google Scholar 

  15. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press (2000)

    Google Scholar 

  16. Muggleton, S.H.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

  17. Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: An automated deduction system for consequence finding. AI Communications 23, 183–203 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Nakajima, N., Tamura, T., Yamanishi, Y., Horimoto, K., Akutsu, T.: Network completion using dynamic programming and least-squares fitting. The Scientific World Journal (2012), doi:10.1100/2012/957620

    Google Scholar 

  19. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  20. Smet, R.D., Marchal, K.: Advantages and limitations of current network inference methods. Nature Reviews Microbiology 8, 717–729 (2010)

    Google Scholar 

  21. Tamaddoni-Nezhad, A., Chaleil, R., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 65, 209–230 (2006)

    Article  Google Scholar 

  22. Westergaard, S.L., Oliveira, A.P., Bro, C., Olsson, L., Nielsen, J.: A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnology and Bioengineering 96, 134–145 (2007)

    Article  Google Scholar 

  23. Whelan, K., Ray, O., King, R.D.: Representation, simulation, and hypothesis generation in graph and logical models of biological networks. In: Castrillo, J.I., Oliver, S.G. (eds.) Yeast Systems Biology, ch. 26, pp. 465–482 (2011)

    Google Scholar 

  24. Yamamoto, Y., Inoue, K., Doncescu, A.: Integrating abduction and induction in biological inference using CF-induction. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology, ch. 9, pp. 213–234 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yamamoto, Y. et al. (2014). Completing SBGN-AF Networks by Logic-Based Hypothesis Finding. In: Fages, F., Piazza, C. (eds) Formal Methods in Macro-Biology. FMMB 2014. Lecture Notes in Computer Science(), vol 8738. Springer, Cham.

Download citation

  • DOI:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10397-6

  • Online ISBN: 978-3-319-10398-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics