An Evolutionary Multiobjective Optimization Approach for HEV Energy Management System

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 321)


Hybrid vehicles have become a promising solution to mitigate the negative effects of pollution and fossil fuel dependency, consequences (among other causes) of an increasing demand on mobility of people and goods. A hybrid vehicle is integrated by many subsystems, where one of the most important is the energy management system, which coordinates when to switch between energy sources to give a desired output. The energy management system needs to take into account several objectives and specifications, most of the times in conflict, to guarantee an acceptable vehicle’s performance. This situation makes it a complex system to control and design. In this context, multiobjective optimization could play a significant role as a design tool, since it enables the designer to analyse the tradeoff among design alternatives. In this paper we present a multiobjective optimization design procedure by means of evolutionary multiobjective optimization in order to tune the energy management system of hybrid vehicles. To this aim, new meaningful objectives are stated and optimized. The presented results validate this approach as viable and useful for designers.


Energy Management System Hybrid Electrical Vehicle Multiobjective Optimization Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feng, A.N., Santini Danilo, J.: Mass impacts on fuel economies of conventional vs. hybrid electric vehicles. Argonne National Laboratory, France (2004)Google Scholar
  2. 2.
    Miller, J.M.: Propulsion Systems for Hybird Vehicles, vol. 45 (2004)Google Scholar
  3. 3.
    Chan, C.C.: The state of the art of electric and hybrid vehicles. Proc. IEEE 90(20), 247–275 (2002)CrossRefGoogle Scholar
  4. 4.
    Lai, J.-S., Nelson, D.J.: Energy Management Power Converters in Hybrid Electric and Fuel Cell Vehicles. Proceedings of the IEEE 95(4) (2007)Google Scholar
  5. 5.
    Li, Q., Chen, W., Li, Y., Liu, S., Huang, J.: Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power & Energy Systems 43(1), 514–525 (2012)CrossRefGoogle Scholar
  6. 6.
    Solano Martínez, J., Mulot, J., Harel, F., Hissel, D., Péra, M.C., John, R.I., Amiet, M.: Experimental validation of a type-2 fuzzy logic controller for energy management in hybrid electrical vehicles. Engineering Applications of Artificial Intelligence (2013)Google Scholar
  7. 7.
    Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M.-.: Algoritmos evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado actual y perspectivas. Revista Iberoamericana de Automática e Informática Industrial 10(3), 251–268 (2013)CrossRefGoogle Scholar
  8. 8.
    Millar, S.: Hybrid-Electric Vehicle Model in Simulink. Matlab central. Agosto 2010, actualizado Marzo (2013)Google Scholar
  9. 9.
    Scrosati, B., Garche, J.: Lithium batteries: Status, prospects and future. Journal of Power Sources 195(9), 2419–2430 (2010)CrossRefGoogle Scholar
  10. 10.
    Battery university. How to Prolong Lithium-based Batteries (2010)Google Scholar
  11. 11.
    Battery university. Charging Lithium-ion (2010)Google Scholar
  12. 12.
    Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M.: Controller tuning using evolutionary multi-objective optimisation: Current trends and applications. Control Engineering Practice 28, 58–73 (2014)CrossRefGoogle Scholar
  13. 13.
    Das, S., Suganthan, P.N.: Differencial evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2010)CrossRefGoogle Scholar
  14. 14.
    Reynoso-Meza, G., et al.: Multiobjective design of continuous controllers using differencial evolution and spherical pruning. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 532–541. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Reynoso-Meza, G., Blasco, X., Sanchis, J.: Optimización evolutiva multi-objetivo y selección multi-criterio para la ingenierıa de control. X Simposio CEA de Ingeniería de Control.Google Scholar
  16. 16.
    Blasco, X., Herrero, J.M., Sanchis, J., Martínez, M.: A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences 178(20), 3908–3924 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pajares, A., Blasco, X., Reynoso-Meza, G., Herrero, J.M.: Desarrollo de una herramienta para el análisis de datos multi-criterio. Aplicación en el ajuste de controladores del tipo PID. XXXIV Jornadas de Automática. Terrassa – Barcelona, 4-6 de Septiembre (2013)Google Scholar
  18. 18.
    Messac, A., Mattson, C.: Generating well-distributed sets of Pareto points for engineering design using Physical Programming. Optimization and Engineering 3, 431–450 (2002), doi:10.1023/A:1021179727569CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto de Automática e Informática IndustrialUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations