Skip to main content

An Evolutionary Multiobjective Optimization Approach for HEV Energy Management System

  • Conference paper
CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control

Abstract

Hybrid vehicles have become a promising solution to mitigate the negative effects of pollution and fossil fuel dependency, consequences (among other causes) of an increasing demand on mobility of people and goods. A hybrid vehicle is integrated by many subsystems, where one of the most important is the energy management system, which coordinates when to switch between energy sources to give a desired output. The energy management system needs to take into account several objectives and specifications, most of the times in conflict, to guarantee an acceptable vehicle’s performance. This situation makes it a complex system to control and design. In this context, multiobjective optimization could play a significant role as a design tool, since it enables the designer to analyse the tradeoff among design alternatives. In this paper we present a multiobjective optimization design procedure by means of evolutionary multiobjective optimization in order to tune the energy management system of hybrid vehicles. To this aim, new meaningful objectives are stated and optimized. The presented results validate this approach as viable and useful for designers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Feng, A.N., Santini Danilo, J.: Mass impacts on fuel economies of conventional vs. hybrid electric vehicles. Argonne National Laboratory, France (2004)

    Google Scholar 

  2. Miller, J.M.: Propulsion Systems for Hybird Vehicles, vol. 45 (2004)

    Google Scholar 

  3. Chan, C.C.: The state of the art of electric and hybrid vehicles. Proc. IEEE 90(20), 247–275 (2002)

    Article  Google Scholar 

  4. Lai, J.-S., Nelson, D.J.: Energy Management Power Converters in Hybrid Electric and Fuel Cell Vehicles. Proceedings of the IEEE 95(4) (2007)

    Google Scholar 

  5. Li, Q., Chen, W., Li, Y., Liu, S., Huang, J.: Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power & Energy Systems 43(1), 514–525 (2012)

    Article  Google Scholar 

  6. Solano Martínez, J., Mulot, J., Harel, F., Hissel, D., Péra, M.C., John, R.I., Amiet, M.: Experimental validation of a type-2 fuzzy logic controller for energy management in hybrid electrical vehicles. Engineering Applications of Artificial Intelligence (2013)

    Google Scholar 

  7. Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M.-.: Algoritmos evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado actual y perspectivas. Revista Iberoamericana de Automática e Informática Industrial 10(3), 251–268 (2013)

    Article  Google Scholar 

  8. Millar, S.: Hybrid-Electric Vehicle Model in Simulink. Matlab central. Agosto 2010, actualizado Marzo (2013)

    Google Scholar 

  9. Scrosati, B., Garche, J.: Lithium batteries: Status, prospects and future. Journal of Power Sources 195(9), 2419–2430 (2010)

    Article  Google Scholar 

  10. Battery university. How to Prolong Lithium-based Batteries (2010)

    Google Scholar 

  11. Battery university. Charging Lithium-ion (2010)

    Google Scholar 

  12. Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M.: Controller tuning using evolutionary multi-objective optimisation: Current trends and applications. Control Engineering Practice 28, 58–73 (2014)

    Article  Google Scholar 

  13. Das, S., Suganthan, P.N.: Differencial evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2010)

    Article  Google Scholar 

  14. Reynoso-Meza, G., et al.: Multiobjective design of continuous controllers using differencial evolution and spherical pruning. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 532–541. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Reynoso-Meza, G., Blasco, X., Sanchis, J.: Optimización evolutiva multi-objetivo y selección multi-criterio para la ingenierıa de control. X Simposio CEA de Ingeniería de Control.

    Google Scholar 

  16. Blasco, X., Herrero, J.M., Sanchis, J., Martínez, M.: A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences 178(20), 3908–3924 (2008)

    Article  MATH  Google Scholar 

  17. Pajares, A., Blasco, X., Reynoso-Meza, G., Herrero, J.M.: Desarrollo de una herramienta para el análisis de datos multi-criterio. Aplicación en el ajuste de controladores del tipo PID. XXXIV Jornadas de Automática. Terrassa – Barcelona, 4-6 de Septiembre (2013)

    Google Scholar 

  18. Messac, A., Mattson, C.: Generating well-distributed sets of Pareto points for engineering design using Physical Programming. Optimization and Engineering 3, 431–450 (2002), doi:10.1023/A:1021179727569

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Pajares Ferrando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pajares Ferrando, A., Blasco Ferragud, X., Reynoso-Meza, G., Herrero Dura, J.M. (2015). An Evolutionary Multiobjective Optimization Approach for HEV Energy Management System. In: Moreira, A., Matos, A., Veiga, G. (eds) CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control. Lecture Notes in Electrical Engineering, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-10380-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10380-8_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10379-2

  • Online ISBN: 978-3-319-10380-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics