Abstract
Hybrid vehicles have become a promising solution to mitigate the negative effects of pollution and fossil fuel dependency, consequences (among other causes) of an increasing demand on mobility of people and goods. A hybrid vehicle is integrated by many subsystems, where one of the most important is the energy management system, which coordinates when to switch between energy sources to give a desired output. The energy management system needs to take into account several objectives and specifications, most of the times in conflict, to guarantee an acceptable vehicle’s performance. This situation makes it a complex system to control and design. In this context, multiobjective optimization could play a significant role as a design tool, since it enables the designer to analyse the tradeoff among design alternatives. In this paper we present a multiobjective optimization design procedure by means of evolutionary multiobjective optimization in order to tune the energy management system of hybrid vehicles. To this aim, new meaningful objectives are stated and optimized. The presented results validate this approach as viable and useful for designers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Feng, A.N., Santini Danilo, J.: Mass impacts on fuel economies of conventional vs. hybrid electric vehicles. Argonne National Laboratory, France (2004)
Miller, J.M.: Propulsion Systems for Hybird Vehicles, vol. 45 (2004)
Chan, C.C.: The state of the art of electric and hybrid vehicles. Proc. IEEE 90(20), 247–275 (2002)
Lai, J.-S., Nelson, D.J.: Energy Management Power Converters in Hybrid Electric and Fuel Cell Vehicles. Proceedings of the IEEE 95(4) (2007)
Li, Q., Chen, W., Li, Y., Liu, S., Huang, J.: Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power & Energy Systems 43(1), 514–525 (2012)
Solano Martínez, J., Mulot, J., Harel, F., Hissel, D., Péra, M.C., John, R.I., Amiet, M.: Experimental validation of a type-2 fuzzy logic controller for energy management in hybrid electrical vehicles. Engineering Applications of Artificial Intelligence (2013)
Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M.-.: Algoritmos evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado actual y perspectivas. Revista Iberoamericana de Automática e Informática Industrial 10(3), 251–268 (2013)
Millar, S.: Hybrid-Electric Vehicle Model in Simulink. Matlab central. Agosto 2010, actualizado Marzo (2013)
Scrosati, B., Garche, J.: Lithium batteries: Status, prospects and future. Journal of Power Sources 195(9), 2419–2430 (2010)
Battery university. How to Prolong Lithium-based Batteries (2010)
Battery university. Charging Lithium-ion (2010)
Reynoso-Meza, G., Blasco, X., Sanchis, J., Martínez, M.: Controller tuning using evolutionary multi-objective optimisation: Current trends and applications. Control Engineering Practice 28, 58–73 (2014)
Das, S., Suganthan, P.N.: Differencial evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2010)
Reynoso-Meza, G., et al.: Multiobjective design of continuous controllers using differencial evolution and spherical pruning. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 532–541. Springer, Heidelberg (2010)
Reynoso-Meza, G., Blasco, X., Sanchis, J.: Optimización evolutiva multi-objetivo y selección multi-criterio para la ingenierıa de control. X Simposio CEA de Ingeniería de Control.
Blasco, X., Herrero, J.M., Sanchis, J., Martínez, M.: A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences 178(20), 3908–3924 (2008)
Pajares, A., Blasco, X., Reynoso-Meza, G., Herrero, J.M.: Desarrollo de una herramienta para el análisis de datos multi-criterio. Aplicación en el ajuste de controladores del tipo PID. XXXIV Jornadas de Automática. Terrassa – Barcelona, 4-6 de Septiembre (2013)
Messac, A., Mattson, C.: Generating well-distributed sets of Pareto points for engineering design using Physical Programming. Optimization and Engineering 3, 431–450 (2002), doi:10.1023/A:1021179727569
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Pajares Ferrando, A., Blasco Ferragud, X., Reynoso-Meza, G., Herrero Dura, J.M. (2015). An Evolutionary Multiobjective Optimization Approach for HEV Energy Management System. In: Moreira, A., Matos, A., Veiga, G. (eds) CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control. Lecture Notes in Electrical Engineering, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-10380-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-10380-8_33
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10379-2
Online ISBN: 978-3-319-10380-8
eBook Packages: EngineeringEngineering (R0)