Advertisement

Knowledge Integration and Diffusion: Measures and Mapping of Diversity and Coherence

  • Ismael RafolsEmail author
Chapter

Abstract

In this chapter, I present a framework based on the concepts of diversity and coherence for the analysis of knowledge integration and diffusion. Visualisations that help to understand insights gained are also introduced. The key novelty offered by this framework compared to previous approaches is the inclusion of cognitive distance (or proximity) between the categories that characterise the body of knowledge under study. I briefly discuss different methods to map the cognitive dimension.

Keywords

Cosine Similarity Cognitive Diversity Cognitive Dimension Knowledge Integration Knowledge Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This chapter summarises work carried out with many collaborators, in particular with L. Leydesdorff, A.L. Porter and A. Stirling. I am grateful to D. Chavarro for writing the code in R language to compute diversity. I thank Y.X. Liu, R. Rousseau and A. Stirling for fruitful comments. I acknowledge support from the UK ESRC grant RES-360-25-0076 (“Mapping the dynamics of emergent technologies”) and the US National Science Foundation (Award #1064146—“Revealing Innovation Pathways: Hybrid Science Maps for Technology Assessment and Foresight”). The findings and observations contained in this paper are those of the author and do not necessarily reflect the views of the funders.

References

  1. Ahlgren, P., Persson, O., & Tijssen, R. (2013). Geographical distance in bibliometric relations within epistemic communities. Scientometrics, 95(2), 771–784.CrossRefGoogle Scholar
  2. Barré, R. (2010). Towards socially robust ST indicators: indicators as debatable devices, enabling collective learning. Research Evaluation, 19(3), 227–231.CrossRefGoogle Scholar
  3. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science & Technology, 37(1), 179–255.CrossRefGoogle Scholar
  4. Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., Larivière, V., & Boyack, K. W. (2012). Design and update of a classification system: the UCSD map of science. PLoS One, 7(7), e39464.Google Scholar
  5. Boschma, R. A. (2005). Proximity and innovation: a critical assessment. Regional Studies, 39, 61–74.CrossRefGoogle Scholar
  6. Boyack, K. W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45–60.CrossRefGoogle Scholar
  7. Boyack, K.W., Klavans, R., Small, H., Ungar, L. (2014). Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science. Journal of Engineering and Technology Management, 32, 147–159.Google Scholar
  8. Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.CrossRefGoogle Scholar
  9. Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., et al. (2011). Clustering more than two million biomedical publications: comparing the accuracies of nine text-based similarity approaches. PLoS One, 6, e18029.CrossRefGoogle Scholar
  10. Carley, S., & Porter, A. (2012). A forward diversity index. Scientometrics, 90, 407–427.CrossRefGoogle Scholar
  11. Cassi, L., Mescheba, W., Turckheim, É. (2014). How to evaluate the degree of interdisciplinarity of an institution? Scientometrics. In press. doi:  10.1007/s11192-014-1280-0.
  12. Chavarro, D., Tang, P., Rafols, I. (2014). Interdisciplinarity and local issue research: evidence from a developing country. Research Evaluation, 23(3), 195–209. doi:  10.1093/reseval/rvu012.
  13. Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3, 191–209.CrossRefGoogle Scholar
  14. Dosi, G. (1982). Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.CrossRefGoogle Scholar
  15. Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: from national systems and “Mode 2” to a triple helix of university-industry-government relations. Research Policy, 29, 109–123.CrossRefGoogle Scholar
  16. Frenken, K. (2010). Geography of scientific knowledge: a proximity approach. Eindhoven Centre for Innovation Studies (ECIS). Retrieved from http://alexandria.tue.nl/repository/books/720753.pdf.
  17. Frenken, K., Boschma, R. A., Hardeman, S. (2010). Proximity and Mode 2 knowledge production. Preprint. Retrieved from http://econ.geo.uu.nl/boschma/frenkenEcon&society.pdf.
  18. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: the dynamics of science and research in contemporary societies. London: Sage.Google Scholar
  19. Hackett, E. J., Parker, J., Conz, D., Rhoten, D., & Parker, A. (2008). Ecology transformed: the national center for ecological analysis and synthesis and the changing patterns of ecological research. In The handbook of science and technology studies (pp. 277–296). Cambridge MA: MIT.Google Scholar
  20. Havemann, F., Gläser, J., Heinz, M., & Struck, A. (2012). Identifying overlapping and hierarchical thematic structures in networks of scholarly papers: a comparison of three approaches. PLoS One, 7, e33255.CrossRefGoogle Scholar
  21. Hessels, L. K., & van Lente, H. (2008). Re-thinking new knowledge production: a literature review and a research agenda. Research Policy, 37, 740–760.CrossRefGoogle Scholar
  22. Jensen, P., & Lutkouskaya, K. (2014). The many dimensions of laboratories’ interdisciplinarity. Scientometrics, 98(1), 619–631.CrossRefGoogle Scholar
  23. Kajikawa, Y., Yoshikawa, J., Takeda, Y., & Matsushima, K. (2008). Tracking emerging technologies in energy research: toward a roadmap for sustainable energy. Technological Forecasting and Social Change, 75, 771–782.CrossRefGoogle Scholar
  24. Kay, L., Newman, N., Youtie, J., Porter, A. L., Rafols, I. (2014). Patent overlay mapping: visualizing technological distance. Journal of the Association for Information Science and Technology. In press. doi:  10.1002/asi.23146
  25. Klavans, R., & Boyack, K. W. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60, 455–476.CrossRefGoogle Scholar
  26. Klavans, R., & Boyack, K. W. (2011). Using global mapping to create more accurate document-level maps of research fields. Journal of the American Society for Information Science and Technology, 62, 1–18.CrossRefGoogle Scholar
  27. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58, 1303–1319.CrossRefGoogle Scholar
  28. Leydesdorff, L., Carley, S., & Rafols, I. (2012). Global maps of science based on the new web-of-science categories. Scientometrics, 94, 589–593.CrossRefGoogle Scholar
  29. Leydesdorff, L., Kushnir, D., Rafols, I. (2014). Interactive overlay maps for US Patent (USPTO) data based on International Patent Classifications (IPC). Scientometrics, 98(3), 1583–1599. doi:  10.1007/s11192-012-0923-2.
  30. Leydesdorff, L., & Rafols, I. (2011a). Local emergence and global diffusion of research technologies: an exploration of patterns of network formation. Journal of the American Society for Information Science and Technology, 62, 846–860.CrossRefGoogle Scholar
  31. Leydesdorff, L., & Rafols, I. (2011b). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5, 87–100.CrossRefGoogle Scholar
  32. Leydesdorff, L., Rafols, I., & Chen, C. (2013). Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations. Journal of the American Society for Information Science and Technology, 64(12), 2573–2586.CrossRefGoogle Scholar
  33. Leydesdorff, L., Rotolo, D., & Rafols, I. (2012). Bibliometric perspectives on medical innovation using the medical subject headings (MeSH) of PubMed. Journal of the American Society for Information Science and Technology, 63, 2239–2253.CrossRefGoogle Scholar
  34. Liu, Y. X., Rafols, I., & Rousseau, R. (2012). A framework for knowledge integration and diffusion. Journal of Documentation, 68, 31–44.CrossRefGoogle Scholar
  35. Liu, Y. X., & Rousseau, R. (2010). Knowledge diffusion through publications and citations: a case study using ESI-fields as unit of diffusion. Journal of the American Society for Information Science and Technology, 61, 340–351.Google Scholar
  36. Lowe, P., & Phillipson, J. (2006). Reflexive interdisciplinary research: the making of a research programme on the rural economy and land use. Journal of Agricultural Economics, 57, 165–184.CrossRefGoogle Scholar
  37. Molas-Gallart, J., Rafols, I., D’Este, P., Llopis, O. (2013). A framework for the evaluation of translational research based on the characterization of social networks and knowledge exchange processes. Presented at the Annual Meeting of the American Evaluation Association, Washington, DC, USA. Available at http://www.ingenio.upv.es/en/working-papers/towards-alternative-framework-evaluation-translational-research-initiatives
  38. Moya-Anegón, F., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F. J., & Herrero-Solana, V. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58, 2167–2179.CrossRefGoogle Scholar
  39. National Academies. (2004). Facilitating Interdisciplinary research. Washington, DC: National Academies.Google Scholar
  40. Nesta, L., & Saviotti, P. P. (2005). Coherence of the knowledge base and the firm’s innovative performance: evidence from the U.S. pharmaceutical industry. Journal of Industrial Economics, 8, 123–142.CrossRefGoogle Scholar
  41. Nesta, L., & Saviotti, P. P. (2006). Firm knowledge and market value in biotechnology. Industrial and Corporate Change, 15, 625–652.CrossRefGoogle Scholar
  42. Nightingale, P., & Scott, A. (2007). Peer review and the relevance gap: ten suggestions for policy makers. Science and Public Policy, 34, 543–553.CrossRefGoogle Scholar
  43. Pinch, T. J., & Bijker, W. E. (1984). The social construction of facts and artefacts: or how the sociology of science and the sociology of technology might benefit each other. Social Studies of Science, 14, 399–441.CrossRefGoogle Scholar
  44. Polanco, X., François, C., & Lamirel, J. C. (2001). Using artificial neural networks for mapping of science and technology: a multi self-organizing-maps approach. Scientometrics, 51, 267–292.CrossRefGoogle Scholar
  45. Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72, 117–147.CrossRefGoogle Scholar
  46. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81, 719–745.CrossRefGoogle Scholar
  47. Porter, A. L., Roessner, J. D., & Heberger, A. E. (2008). How interdisciplinary is a given body of research? Research Evaluation, 17, 273–282.CrossRefGoogle Scholar
  48. Rafols, I., Ciarli, T., Van Zwanenberg, P., Stirling, A. (2012). Towards indicators for opening up S&T policy. STI Indicators Conference (pp.675–682). Retrieved from http://2012.sticonference.org/Proceedings/vol2/Rafols_Towards_675.pdf.
  49. Rafols, I., & Leydesdorff, L. (2009). Content-based and algorithmic classifications of journals: perspectives on the dynamics of scientific communication and indexer effects. Journal of the American Society for Information Science and Technology, 60, 1823–1835.CrossRefGoogle Scholar
  50. Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P., & Stirling, A. (2012). How journal rankings can suppress interdisciplinarity. The case of innovation studies and business and management. Research Policy, 41, 1262–1282.CrossRefGoogle Scholar
  51. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience. Scientometrics, 82, 263–287.CrossRefGoogle Scholar
  52. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: a new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61, 1871–1887.CrossRefGoogle Scholar
  53. Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24–43.CrossRefzbMATHMathSciNetGoogle Scholar
  54. Ricotta, C., & Szeidl, L. (2006). Towards a unifying approach to diversity measures: bridging the gap between the Shannon entropy and Rao’s quadratic index. Theoretical Population Biology, 70, 237–243.CrossRefzbMATHGoogle Scholar
  55. Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105, 1118–1123.CrossRefGoogle Scholar
  56. Schoen, A., Villard, L., Laurens, P., Cointet, J. P., Heimeriks, G., Alkemade, F. (2012). The network structure of technological developments; technological distance as a walk on the technology map. Presented at the STI Indicators Conference, MontréalGoogle Scholar
  57. Skupin, A., Biberstine, J. R., & Börner, K. (2013). Visualizing the topical structure of the medical sciences: a self-organizing map approach. PLoS One, 8, e58779.CrossRefGoogle Scholar
  58. Soós, S., & Kampis, G. (2011). Towards a typology of research performance diversity: the case of top Hungarian players. Scientometrics, 87, 357–371.CrossRefGoogle Scholar
  59. Soós, S., & Kampis, G. (2012). Beyond the basemap of science: mapping multiple structures in research portfolios—evidence from Hungary. Scientometrics, 93, 869–891.CrossRefGoogle Scholar
  60. Stirling, A. (1998). On the economics and analysis of diversity. Science Policy Research Unit (SPRU), Electronic Working Papers Series, 28. Retrieved from http://www.uis.unesco.org/culture/documents/stirling.pdf.
  61. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of The Royal Society Interface, 4, 707–719.CrossRefGoogle Scholar
  62. Takeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: a bibliometric approach. Scientometrics, 80, 23–29.CrossRefGoogle Scholar
  63. Waltman, L., & van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63, 2378–2392.CrossRefGoogle Scholar
  64. Yegros-Yegros, A., Amat, C.B., D’Este, P., Porter, A.L., & Rafols, I. (2013). Does interdisciplinary research lead to higher citation impact? The different effect of proximal and distal interdisciplinarity. Presented at the DRUID Conference, Barcelona. Retrieved from http://druid8.sit.aau.dk/acc_papers/54dcxbblnj9vbrlt2v4gku686mcx.pdf.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Ingenio (CSIC-UPV)Universitat Politècnica de ValènciaValència(Spain)
  2. 2.SPRU (Science Policy Research Unit)University of SussexBrighton(UK)

Personalised recommendations