Skip to main content

Recent Advances of Quality Assessment for Medical Imaging Systems and Medical Images

  • Chapter
  • First Online:

Abstract

This chapter describes the importance of medical image quality assessment and reviews major factors used for characterizing physical properties of medical images. Recent trends in assessment of medical imaging systems and medical images are also addressed. We will begin with a brief review of the concepts and definitions of some conventional medical image quality metrics and then describe a recently proposed image quality metric. We also provide two clinical applications related to quality assessment for medical images. The first application deals with the improvement of image quality in mammography. The second application addresses the effect of radiation dose reduction on image quality in digital radiography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Samei E, Ranger NT, Dobbins III JT et al: Intercomparison of methods for image characterization. 1. modulation transfer function. Med Phys 33: 1454–1465, 2006

    Article  Google Scholar 

  2. Dobbin III JT, Samei E, Ranger NT et al: Intercomparison of methods for image quality characterization. II. noise power spectrum. Med Phys 33: 1466–1475, 2006

    Article  Google Scholar 

  3. Neitzel U, Gunther-Kohfahl S, Borasi E et al: Determination of the detective quantum efficiency of a digital X-ray detector: comparison of three evaluations using a common image data set. Med Phys 31: 2205–2211, 2004

    Article  Google Scholar 

  4. Tsai DY, Lee Y, Matsuyama E: Information entropy measure for evaluation of image quality. J Digit Imaging, 21: 338–347, 2008

    Article  Google Scholar 

  5. Fujita H, Tsai DY, Itoh K et al: A simple method for determining the modulation transfer function in digital radiography. IEEE Trans Med Imag 11: 34–39, 1992

    Article  Google Scholar 

  6. Samei E, Flynn MJ, Reimann DA: A method for measuring the presampling MTF of digital radiographic systems using an edge test device. Med Phys 25: 102–113, 1998

    Article  Google Scholar 

  7. Samei E, Buhr E, Granfors P et al: Comparison of edge analysis techniques for the determination of the MTF of digital radiographic systems. Phys Med Biol 50: 3613–3625, 2005

    Article  Google Scholar 

  8. Flynn MJ, Samei E: Experimental comparison of noise and resolution for 2k and 4k storage phosphor radiography systems. Med Phys 26: 1612–1623, 1999

    Article  Google Scholar 

  9. Spahn M: Flat detectors and their clinical applications. Eur Radiol 15: 1934–1947, 2005

    Article  Google Scholar 

  10. Fetterly KA, Hangiandreou NJ: Effect of X-ray spectra on the DQE of a computed radiography system. Med Phys 28: 241–249, 2001

    Article  Google Scholar 

  11. Fettery KA, Schueler BA: Performance evaluation of a computed radiography imaging device using a typical front side and novel dual side readout storage phosphors. Med Phys 33: 290–296, 2006

    Article  Google Scholar 

  12. Cunningham IA: Applied linear-system theory. In: Beutel J, Kundel HL, VanMetter RL (ed) Handbook of medical imaging, vol 1, Physics and psychophysics: SPIE Press, Bellingham, WA, 2000, pp. 79–159

    Chapter  Google Scholar 

  13. Luisier F, Blu T, Unser M: A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans Image Process 16: 593–606, 2007.

    Article  MathSciNet  Google Scholar 

  14. Bao P, Zhang L: Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Trans Med Imag 22: 1089–1099, 2003

    Article  Google Scholar 

  15. Cincotti G, Loi G, Pappalardo M: Frequency decomposition and compounding of ultrasound medical images with wavelet packets. IEEE Trans Med Imag 20: 764–771, 2001

    Article  Google Scholar 

  16. Wang YP, Wu Q, Castleman KR et al: Chromosome image enhancement using multiscale differential operators. IEEE Trans Med Imag 22: 685–693, 2003

    Article  Google Scholar 

  17. Mencattini M, Salmeri M, Lojacono R et al: Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans Instrum Meas 57: 1422–1430, 2008

    Article  Google Scholar 

  18. Scharcanski J, Jung CR: Denoising and enhancing digital mammographic images for visual screening. Comput Med Imag Grap 30: 243–254, 2006

    Article  Google Scholar 

  19. Tsai DY, Lee Y, Chiba R: An improved adaptive neighborhood contrast enhancement method for medical images. Proceedings of IASTED International Conference, BioMed, pp. 59–63, 2005

    Google Scholar 

  20. Yoon BW, Song WJ: Image contrast enhancement based on the generalized histogram. J Electron Imaging 16: 033005, 1–8, 2007

    Google Scholar 

  21. Fodor IK, Kamath C: Denoising through wavelet shrinkage: an empirical study. J Electro Imaging 2: 151–160, 2003

    Article  Google Scholar 

  22. Ferreira CBR, Borges DL: Analysis of mammogram classification using a wavelet transform decomposition. Pattern Recogn Lett 24: 973–982, 2003

    Article  Google Scholar 

  23. Cho D, Bui TD, Chen G: Image denoising based on wavelet shrinkage using neighbor and level dependency. Int J Wavelets Multiresolut Inf Process 7: 299–311, 2009

    Article  MATH  MathSciNet  Google Scholar 

  24. J. E. Fowler: The redundant discrete wavelet transform and additive noise. IEEE Signal Process Lett 12: 629–632, 2005

    Article  MathSciNet  Google Scholar 

  25. Starck JL, Fadili J, Murtagh F: The undecimated wavelet decomposition and its reconstruction. IEEE Trans Image Process 16: 297–309, 2007

    Article  MathSciNet  Google Scholar 

  26. Wang XY, Yang HY, Fu ZK: A new wavelet-based image denoising using undecimated discrete wavelet transform and least square support vector machine. Expert Syst Appl 37: 7040–7049, 2010

    Google Scholar 

  27. Mencattini A, Rabottino G, Salmeri M et al: Denoising and enhancement of mammographic images under the assumption of heteroscedastic additive noise by an optimal subband thresholding. Int J Wavelets Multiresolut Inf Process 8: 713–741, 2010

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhao P, Shang Z, Zhao C: Image denoising based on Gaussian and non-gaussian assumption. Int J Wavelets Multiresolut Inf Process 10: 1250014 (11 pages), 2012

    Google Scholar 

  29. Huang Z, Fang B, He X et al: Image denoising based on the dyadic wavelet transform and improved threshold. Int J Wavelets Multiresolut Inf Process 7: 269–280, 2009

    Article  MATH  MathSciNet  Google Scholar 

  30. Matsuyama E, Tsai DY, Lee Y et al: A modified undecimated discrete wavelet transform based approach to mammographic image denoising. J Digit Imaging 26: 748–758, 2013

    Article  Google Scholar 

  31. Kim W, You J, Jeong J: Contrast enhancement using histogram equalization based on logarithmic mapping. Opt Eng 51: 067002, 2012

    Article  Google Scholar 

  32. Papadopoulos A, Fotiadis JI, Costaridou L: Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. Comput Biol Med 38: 1045–1055, 2008

    Article  Google Scholar 

  33. Rangayyan RM, Shen L, Shen Y: Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms. IEEE Trans Inf Technol Biomed 1: 161–170, 1997

    Article  Google Scholar 

  34. Jiang J, Yao B, Wason AM: Integrating of fuzzy logic and structural tensor towards mammogram contrast enhancement. Comput Med Imag Grap 29: 83–90, 2005

    Article  Google Scholar 

  35. Hashemi S, Kiani S, Noroozi N et al: An image contrast enhancement method based on genetic algorithm. Pattern Recogn Lett 31:1816–1824, 2010

    Article  Google Scholar 

  36. Strickland RN and Hahn H: Wavelet transforms for detecting microcalcifications in digital mammograms. IEEE Trans on Med Imag 15: 218–229, 1996

    Article  Google Scholar 

  37. Tsai DY, Lee Y, Sakaguchi S: A preliminary study of wavelet-coefficient transfer curves for the edge enhancement of medical images. Transactions of the Japanese Society for Medical and Biological Engineering 40: 86–90, 2002

    Google Scholar 

  38. Tsai DY, Lee Y: A method of medical image enhancement using wavelet-coefficient mapping functions. Proceedings of IEEE 2003 International Conference on Neural Networks and Signal Processing, vol. 2, pp. 1091–1094, 2003

    Google Scholar 

  39. Heinlein P, Drexl J, Schneider W: Integrated wavelets for enhancement of microcalcifications in digital mammography. IEEE Trans Med Imag 22: 402–413, 2003

    Article  Google Scholar 

  40. Lee Y, Tsai DY, Suzuki T: Contrast enhancement of medical images using sigmoid-type transfer curves for wavelet coefficient weighting adjustment. Med Imag Inform Sci 25: 48–53, 2008

    Google Scholar 

  41. Matsuyama E, Tsai DY, Lee Y et al: Comparison of a discrete wavelet transform method and a modified undecimated discrete wavelet transform method for denoising of mammograms. Proceedings of 34th Annual International Conference of the IEEE EMBS, pp. 3403–3406, 2013

    Google Scholar 

  42. Mammographic Image Analysis Society. http://peipa.essex.ac.uk/info/mias.html. Accessed 11 Jan 2012

  43. Scheffe H: The analysis of variance. New York: Wiley, 1959

    MATH  Google Scholar 

  44. Canavos GC, Koutrouvelis JA: An introduction to the design & analysis of experiments. Upper Saddle River: Pearson Prentice Hall, 2008 (eBook)

    Google Scholar 

  45. Gruber M, Weber M, Homolka P et al: Feasibility of dose reduction using needle-structured image plates versus powder-structured plates for computed radiography of the knee. Am J Roentgenol 197:318–323, 2011

    Article  Google Scholar 

  46. Liu X, Shaw CC, Lai CJ et al: Comparison of scatter rejection and low-contrast performance of scan equalization digital radiography (SEDR), slot-scan digital radiography, and full-field digital radiography systems for chest phantom imaging. Med Phys 38:23–33, 2011

    Article  Google Scholar 

  47. Schaefer-Prokop C, Neitzel U, Venema HW et al: Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur J Radiol 18: 1818–1830, 2008

    Article  Google Scholar 

  48. Donoho DL: De-noising by soft-thresholding. IEEE Trans Inf Theory 41:613–627, 1995

    Article  MATH  MathSciNet  Google Scholar 

  49. Ferrari RJ, Winsor R: Digital radiographic image denoising via wavelet-based hidden Markov model estimation. J Digit Imaging 18:154–167, 2005

    Article  Google Scholar 

  50. Harpan MD: A computer simulation of wavelet noise reduction in computed tomography. Med Phys 26:1600–1606, 1999

    Article  Google Scholar 

  51. Jansen M, Uytterhoeven G, Bultheel A: Image de-noising by integer wavelet transforms and generalized cross validation. Med Phys 26:622–630, 1999

    Article  Google Scholar 

  52. Okamoto T, Furui S, Ichiji H et al: Noise reduction in digital radiography using wavelet packet based on noise characteristics. J Signal Processing 8:485–494, 2004

    Article  Google Scholar 

  53. Tischenko O, Hoeschen C, Buhr E: Reduction of anatomical noise in medical X-ray images. Radiat Prot Dosim 114:69–74, 2005

    Article  Google Scholar 

  54. Watanabe H, Tsai DY, Lee Y et al: An integrated method of wavelet coefficient thresholding for reducing radiation dose while maintaining diagnostic image quality. Med Imag Inform Sci 28:51–56, 2011

    Google Scholar 

  55. Yasuda N, Ishikawa Y, Kodera Y: Improvement of image quality in chest MDCT using nonlinear wavelet shrinkage with trimmed-thresholding. Jpn J Radiol Technol 61:1599–1608, 2005

    Google Scholar 

  56. Chang SG, Yu B, Vetterli M: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9:1532–1546, 2000

    Google Scholar 

  57. Watanabe H, Tsai DY, Lee Y et al: Improvement of image quality and radiation dose reduction in digital radiography using an integrated wavelet-transform-based method. Proceeding of XX IMEKO World Congress, TC13-P-2 (342), pp. 1–4, 2012

    Google Scholar 

  58. Donoho DL, Johnstone JM: Ideal spatial adaptation via wavelet shrinkage. Biometrila 81:425–455, 1994

    Article  MATH  MathSciNet  Google Scholar 

  59. Donoho DL, Johnstone JM: Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90:1200–1224, 1995

    Article  MATH  MathSciNet  Google Scholar 

  60. Zhang M, Gunturk BK: Multiresolution bilateral filtering for image denoising. IEEE Trans Image Process 17:2324–2333, 2008

    Article  MathSciNet  Google Scholar 

  61. Karthikeyan K, Chandrasekar C: Speckle noise reduction of medical ultrasound images using Bayesshrink wavelet threshold. Int J of Comput Appl 22:8–14, 2011

    Google Scholar 

  62. Sendur L, Selesnick IE: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Signal Process 50:2744–2756, 2002

    Article  Google Scholar 

  63. Watanabe H, Tsai DY, Lee Y et al: Evaluation of irreversible compressed images in computed radiography using physical image quality measures. Jpn J Radiol Technol 65:1618–1627, 2009

    Article  Google Scholar 

  64. Samei E, Flynn MJ: An experimental comparison of detector performance for computed radiography systems. Med Phys 29:447–459, 2002

    Article  Google Scholar 

  65. Bankman IN: Handbook of Medical Imaging. San Diego: Academic Press, pp. 24–26, 2000

    Google Scholar 

  66. Lim JS: Two-dimensional signal and image processing. Englewood Cliffs: Prentice Hall, p. 548, 1989

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Haruyuki Watanabe for his contribution to the data acquisition experiments and cooperation in dose reduction studies. This research was supported in part by a Grant-in-Aid for Scientific Research (23602004) from the Japan Society for the Promotion of Sciences (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-Yih Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsai, DY., Matsuyama, E. (2015). Recent Advances of Quality Assessment for Medical Imaging Systems and Medical Images. In: Deng, C., Ma, L., Lin, W., Ngan, K. (eds) Visual Signal Quality Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-10368-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10368-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10367-9

  • Online ISBN: 978-3-319-10368-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics