Quality Assessment of Mobile Videos

Chapter

Abstract

Video consumption in mobile environments has become very popular these days. Accordingly, the issue of how to maximize users’ satisfaction for delivered video contents has arisen as an important research problem. Therefore, it is crucial to understand and model the perceptual mechanism of quality of experience (QoE) of mobile videos. This chapter reviews recent advances in the research of subjective and objective quality assessment of mobile videos and discusses future challenges.

References

  1. 1.
    Argyropoulos, S., Raake, A., Garcia, M.N., List, P.: No-reference bit stream model for video quality assessment of H.264/AVC video based on packet loss visibility. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1169–1172 (2011)Google Scholar
  2. 2.
    Boujut, H., Benois-Pineau, J., Hadar, O., Ahmed, T., Bonnet, P.: Weighted-MSE based on saliency map for assessing video quality of H.264 video streams. In: Proceedings of the IS&T/SPIE Electronic Imaging, pp. 78,670X–78,670X. International Society for Optics and Photonics (2011)Google Scholar
  3. 3.
    Boulos, F., Parrein, B., Le Callet, P., Hands David, S.: Perceptual effects of packet loss on H.264/AVC encoded videos. In: Proceedings of the Fourth International Workshop on Video Processing and Quality Metrics for Consumer Electronics, pp. 1–6 (2009)Google Scholar
  4. 4.
    Castro, T., Chapiro, A., Cicconet, M., Velho, L.: Towards mobile HDR video. In: Proceedings of the Eurographics-Areas Papers, pp. 75–76. The Eurographics Association (2011)Google Scholar
  5. 5.
    Chan, A., Zeng, K., Mohapatra, P., Lee, S.J., Banerjee, S.: Metrics for evaluating video streaming quality in lossy IEEE 802.11 wireless networks. In: Proceedings of the IEEE INFOCOM, pp. 1–9. IEEE (2010)Google Scholar
  6. 6.
    Chan, A.J., Pande, A., Baik, E., Mohapatra, P.: Temporal quality assessment for mobile videos. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, pp. 221–232. ACM (2012)Google Scholar
  7. 7.
    Chandler, D.M., Hemami, S.S.: VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing 16(9), 2284–2298 (2007)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, J.Y., Thropp, J.E.: Review of low frame rate effects on human performance. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 37(6), 1063–1076 (2007)CrossRefGoogle Scholar
  9. 9.
    Coverdale, P., Mollerand, S., Raake, A., Takahashi, A.: Multimedia quality assessment standards in ITU-T SG12. IEEE Signal Processing Magazine 28(6), 91–97 (2011)CrossRefGoogle Scholar
  10. 10.
    Cranley, N., Perry, P., Murphy, L.: User perception of adapting video quality. International Journal of Human-Computer Studies 64(8), 637–647 (2006)CrossRefGoogle Scholar
  11. 11.
    De Simone, F., Tagliasacchi, M., Naccari, M., Tubaro, S., Ebrahimi, T.: A H.264/AVC video database for the evaluation of quality metrics. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2430–2433. IEEE (2010)Google Scholar
  12. 12.
    Deshpande, S.: Subjective and objective visual quality evaluation of 4K video using AVC and HEVC compression. In: Proceedings of the SID Symposium Digest of Technical Papers, vol. 43, pp. 481–484. Wiley Online Library (2012)Google Scholar
  13. 13.
    Feghali, R., Speranza, F., Wang, D., Vincent, A.: Video quality metric for bit rate control via joint adjustment of quantization and frame rate. IEEE Transactions on Broadcasting 53(1), 441–446 (2007)CrossRefGoogle Scholar
  14. 14.
    Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between quality of experience and quality of service. IEEE Network 24(2), 36–41 (2010)CrossRefGoogle Scholar
  15. 15.
    Garcia, M.N., Raake, A., List, P.: Towards content-related features for parametric video quality prediction of IPTV services. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 757–760 (2008)Google Scholar
  16. 16.
    Garcia, R., Kalva, H.: Subjective evaluation of HEVC in mobile devices. In: Proceedings of the IS&T/SPIE Electronic Imaging, pp. 86,670L–86,670L. International Society for Optics and Photonics (2013)Google Scholar
  17. 17.
    Goldmann, L., De Simone, F., Ebrahimi, T.: A comprehensive database and subjective evaluation methodology for quality of experience in stereoscopic video. In: Proceedings of the IS&T/SPIE Electronic Imaging, pp. 75,260S–75,260S. International Society for Optics and Photonics (2010)Google Scholar
  18. 18.
    Gustafsson, J., Heikkila, G., Pettersson, M.: Measuring multimedia quality in mobile networks with an objective parametric model. In: Proceedings of the 15th IEEE International Conference on Image Processing (ICIP), pp. 405–408. IEEE (2008)Google Scholar
  19. 19.
    Hanhart, P., Rerabek, M., De Simone, F., Ebrahimi, T.: Subjective quality evaluation of the upcoming HEVC video compression standard. In: Proceedings of the SPIE Optical Engineering+ Applications, pp. 84,990V–84,990V. International Society for Optics and Photonics (2012)Google Scholar
  20. 20.
    Huynh-Thu, Q., Ghanbari, M.: The accuracy of PSNR in predicting video quality for different video scenes and frame rates. Telecommunication Systems 49(1), 35–48 (2012)CrossRefGoogle Scholar
  21. 21.
    ITU-T Recommendation BT.1683: Objective perceptual video quality measurement techniques for standard definition digital broadcast television in the presence of a full reference (2004)Google Scholar
  22. 22.
    ITU-T Recommendation G.1070: Opinion model for video-telephony applications (2004)Google Scholar
  23. 23.
    ITU-T Recommendation J.144: Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference (2004)Google Scholar
  24. 24.
    ITU-T Recommendation J.247: Objective perceptual multimedia video quality measurement in the presence of a full reference (2008)Google Scholar
  25. 25.
    ITU-T Recommendation J.249: Objective perceptual multimedia video quality measurement of HDTV for digital cable television in the presence of a full reference (2011)Google Scholar
  26. 26.
    ITU-T Recommendation J.342,: Objective multimedia video quality measurement of HDTV for digital cable television in the presence of a reduced reference signal (2011)Google Scholar
  27. 27.
    ITU-T Recommendation P.1201: Parametric non-intrusive assessment of audiovisual media streaming quality (2012)Google Scholar
  28. 28.
    ITU-T Recommendation P.1202: Parametric non-intrusive bitstream assessment of video streaming quality (2012)Google Scholar
  29. 29.
    Jin, L., Boev, A., Gotchev, A., Egiazarian, K.: 3D-DCT based perceptual quality assessment of stereo video. In: Proceedings of the 18th IEEE International Conference on Image Processing (ICIP), pp. 2521–2524. IEEE (2011)Google Scholar
  30. 30.
    Jose Joskowicz, R.S.: A model for video quality assessment considering packet loss for broadcast digital television coded in H.264. International Journal of Digital Multimedia Broadcasting 2014(242531), 1–11 (2014)Google Scholar
  31. 31.
    Joskowicz, J., Ardao, J.: Combining the effects of frame rate, bit rate, display size and video content in a parametric video quality model. In: Proceedings of the 6th Latin America Networking Conference, pp. 4–11. ACM (2011)Google Scholar
  32. 32.
    Joskowicz, J., Sotelo, R., Lopez Ardao, J.: Towards a general parametric model for perceptual video quality estimation. IEEE Transactions on Broadcasting 59(4), 569–579 (2013)CrossRefGoogle Scholar
  33. 33.
    Jumisko-Pyykkö, S., Hannuksela, M.M.: Does context matter in quality evaluation of mobile television? In: Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 63–72. ACM (2008)Google Scholar
  34. 34.
    Jumisko-Pyykkö, S., Strohmeier, D., Utriainen, T., Kunze, K.: Descriptive quality of experience for mobile 3D video. In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, pp. 266–275. ACM (2010)Google Scholar
  35. 35.
    Khan, A., Sun, L., Fajardo, J., Taboada, I., Liberal, F., Ifeachor, E.: Impact of end devices on subjective video quality assessment for QCIF video sequences. In: Proceedings of the Third International Workshop on Quality of Multimedia Experience (QoMEX), pp. 177–182. IEEE (2011)Google Scholar
  36. 36.
    Khan, A., Sun, L., Ifeachor, E.: Content-based video quality prediction for MPEG4 video streaming over wireless networks. Journal of Multimedia 4(4) (2009)Google Scholar
  37. 37.
    Kim, C.S., Jin, S.H., Seo, D.J., Ro, Y.M.: Measuring video quality on full scalability of H.264/AVC scalable video coding. IEICE Transactions on Communications 91(5), 1269–1278 (2008)Google Scholar
  38. 38.
    Kim, S.J., Chae, C.B., Lee, J.S.: Quality perception of coding artifacts and packet loss in networked video communications. In: Proceedings of the IEEE Globecom Workshops (GC Wkshps), pp. 1357–1361. IEEE (2012)Google Scholar
  39. 39.
    Korhonen, J., Reiter, U., Ukhanova, A.: Frame rate versus spatial quality: Which video characteristics do matter? In: Proceedings of the Visual Communications and Image Processing (VCIP), pp. 1–6. IEEE (2013)Google Scholar
  40. 40.
    Koumaras, H., Kourtis, A., Martakos, D., Lauterjung, J.: Quantified PQoS assessment based on fast estimation of the spatial and temporal activity level. Multimedia Tools and Applications 34(3), 355–374 (2007)CrossRefGoogle Scholar
  41. 41.
    Kulyk, V., Tavakoli, S., Folkesson, M., Brunnstrom, K., Wang, K., Garcia, N.: 3D video quality assessment with multi-scale subjective method. In: Proceedings of the Fifth International Workshop on Quality of Multimedia Experience (QoMEX), pp. 106–111. IEEE (2013)Google Scholar
  42. 42.
    Lee, J.S., De Simone, F., Ebrahimi, T.: Subjective quality evaluation via paired comparison: application to scalable video coding. IEEE Transactions on Multimedia 13(5), 882–893 (2011)CrossRefGoogle Scholar
  43. 43.
    Lee, J.S., De Simone, F., Ebrahimi, T., Ramzan, N., Izquierdo, E.: Quality assessment of multidimensional video scalability. IEEE Communications Magazine 50(4), 38–46 (2012)CrossRefGoogle Scholar
  44. 44.
    Liu, T., Wang, Y., Boyce, J.M., Wu, Z., Yang, H.: Subjective quality evaluation of decoded video in the presence of packet losses. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), vol. 1, pp. I–1125–I1128. IEEE (2007)Google Scholar
  45. 45.
    Liu, T., Wang, Y., Boyce, J.M., Yang, H., Wu, Z.: A novel video quality metric for low bit-rate video considering both coding and packet-loss artifacts. IEEE Journal of Selected Topics in Signal Processing 3(2), 280–293 (2009)CrossRefGoogle Scholar
  46. 46.
    Lopez, J., Slanina, M., Arnaiz, L., Menendez, J.: Subjective quality assessment in scalable video for measuring impact over device adaptation. In: Proceedings of the IEEE EUROCON, pp. 162–169. IEEE (2013)Google Scholar
  47. 47.
    Magalhaes, L., Bessa, M., Urbano, C., Melo, M., Peres, E., Chalmers, A.: A survey on HDR visualization on mobile devices. In: Proceedings of the SPIE Photonics Europe, pp. 843,607–843,607. International Society for Optics and Photonics (2012)Google Scholar
  48. 48.
    Minhas, T.N., Lagunas, O.G., Arlos, P., Fiedler, M.: Mobile video sensitivity to packet loss and packet delay variation in terms of QoE. In: Proceedings of the 19th International Packet Video Workshop (PV), pp. 83–88. IEEE (2012)Google Scholar
  49. 49.
    Mittal, A., Moorthy, A.K., Ghosh, J., Bovik, A.C.: Algorithmic assessment of 3D quality of experience for images and videos. In: Proceedings of the IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), pp. 338–343. IEEE (2011)Google Scholar
  50. 50.
    Moorthy, A.K., Choi, L.K., Bovik, A.C., Veciana, G.D.: Video quality assessment on mobile devices: Subjective, behavioral and objective studies. IEEE Journal of Selected Topics in Signal Processing 6(6), 652–671 (2012)CrossRefGoogle Scholar
  51. 51.
    Ou, Y.F., Liu, T., Zhao, Z., Ma, Z., Wang, Y.: Modeling the impact of frame rate on perceptual quality of video. In: Proceedings of the 15th IEEE International Conference on Image Processing, 2008, pp. 689–692 (2008)Google Scholar
  52. 52.
    Ou, Y.F., Ma, Z., Liu, T., Wang, Y.: Perceptual quality assessment of video considering both frame rate and quantization artifacts. IEEE Transactions on Circuits and Systems for Video Technology 21(3), 286–298 (2011)CrossRefGoogle Scholar
  53. 53.
    Ou, Y.F., Ma, Z., Wang, Y.: A novel quality metric for compressed video considering both frame rate and quantization artifacts. In: Proceedings of the International Workshop Video Processing and Quality Metrics for Consumer (VPQM), pp. 1–5 (2009)Google Scholar
  54. 54.
    Ou, Y.F., Xue, Y., Wang, Y.: Q-STAR: A perceptual video quality model for mobile platforms considering impact of spatial, temporal, and amplitude resolutions. Tech. rep., Polytechnic Institute of NYU (2012)Google Scholar
  55. 55.
    Ou, Y.F., Zhou, Y., Wang, Y.: Perceptual quality of video with frame rate variation: A subjective study. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2446–2449 (2010)Google Scholar
  56. 56.
    Park, J., Seshadrinathan, K., Lee, S., Bovik, A.C.: Video quality pooling adaptive to perceptual distortion severity. IEEE Transactions on Image Processing 22(2), 610–620 (2013)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Péchard, S., Pépion, R., Le Callet, P., et al.: Suitable methodology in subjective video quality assessment: a resolution dependent paradigm. In: Proceedings of the Third International Workshop on Image Media Quality and its Applications (IMQA) (2008)Google Scholar
  58. 58.
    Pessemier, T.D., Moor, K.D., Joseph, W., Marez, L.D., Martens, L.: Quantifying subjective quality evaluations for mobile video watching in a semi-living lab context. IEEE Transactions on Broadcasting 58(4), 580–589 (2012)CrossRefGoogle Scholar
  59. 59.
    Pessemier, T.D., Moor, K.D., Joseph, W., Marez, L.D., Martens, L.: Quantifying the influence of rebuffering interruptions on the user’s quality of experience during mobile video watching. IEEE Transactions on Broadcasting 59(1), 47–61 (2013)CrossRefGoogle Scholar
  60. 60.
    Pitrey, Y., Barkowsky, M., Le Callet, P., Pepion, R.: Subjective quality assessment of MPEG-4 scalable video coding in a mobile scenario. In: Proceedings of the 2nd European Workshop on Visual Information Processing (EUVIP), pp. 86–91. IEEE (2010)Google Scholar
  61. 61.
    Pitrey, Y., Barkowsky, M., Le Callet, P., Pepion, R., et al.: Subjective quality evaluation of H.264 high-definition video coding versus spatial up-scaling and interlacing. QoE for Multimedia Content Sharing (2010)Google Scholar
  62. 62.
    Pitrey, Y., Engelke, U., Barkowsky, M., Pépion, R., Le Callet, P.: Subjective quality of SVC-coded videos with different error-patterns concealed using spatial scalability. In: Proceedings of the 3rd European Workshop on Visual Information Processing (EUVIP), pp. 180–185. IEEE (2011)Google Scholar
  63. 63.
    Pitrey, Y., Engelke, U., Barkowsky, M., Pépion, R., Le Callet, P., et al.: Aligning subjective tests using a low cost common set. QoE for Multimedia Content Sharing (2011)Google Scholar
  64. 64.
    Quan, H.T., Mohammed, G.: Temporal aspect of perceived quality of mobile video broadcasting. IEEE Transactions on Broadcasting 54(3), 641–651 (2008)CrossRefGoogle Scholar
  65. 65.
    Raake, A., Garcia, M.N., Moller, S., Berger, J., Kling, F., List, P., Johann, J., Heidemann, C.: T-V-model: Parameter-based prediction of IPTV quality. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1149–1152 (2008)Google Scholar
  66. 66.
    Ries, M., Crespi, C., Nemethova, O., Rupp, M.: Content based video quality estimation for H.264/AVC video streaming. In: Proceedings of the IEEE Wireless Communications and Networking Conference, pp. 2668–2673. IEEE (2007)Google Scholar
  67. 67.
    Roodaki, H., Hashemi, M.R., Shirmohammadi, S.: A new methodology to derive objective quality assessment metrics for scalable multiview 3D video coding. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP) 8(3s), 44:1–44:25 (2012)Google Scholar
  68. 68.
    Seshadrinathan, K., Bovik, A.C.: Motion tuned spatio-temporal quality assessment of natural videos. IEEE Transactions on Image Processing 19(2), 335–350 (2010)CrossRefMathSciNetGoogle Scholar
  69. 69.
    Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective and objective quality assessment of video. IEEE transactions on Image Processing 19(6), 1427–1441 (2010)CrossRefMathSciNetGoogle Scholar
  70. 70.
    Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Transactions on Image Processing 15(2), 430–444 (2006)CrossRefGoogle Scholar
  71. 71.
    Sohn, H., Yoo, H., De Neve, W., Kim, C.S., Ro, Y.M.: Full-reference video quality metric for fully scalable and mobile SVC content. IEEE Transactions on Broadcasting 56(3), 269–280 (2010)CrossRefGoogle Scholar
  72. 72.
    Stockhammer, T.: Dynamic adaptive streaming over HTTP: standards and design principles. In: Proceedings of the Second Annual ACM Conference on Multimedia Systems, pp. 133–144. ACM (2011)Google Scholar
  73. 73.
    Tominaga, T., Hayashi, T., Okamoto, J., Takahashi, A.: Performance comparisons of subjective quality assessment methods for mobile video. In: Proceedings of the Second International Workshop on Quality of Multimedia Experience (QoMEX), pp. 82–87. IEEE (2010)Google Scholar
  74. 74.
    Wang, D., Speranza, F., Vincent, A., Martin, T., Blanchfield, P.: Toward optimal rate control: a study of the impact of spatial resolution, frame rate, and quantization on subjective video quality and bit rate. In: Proceedings of the Visual Communications and Image Processing 2003, pp. 198–209. International Society for Optics and Photonics (2003)Google Scholar
  75. 75.
    Wang, Y., Schaar, M., Chang, S.F., Loui, A.C.: Classification-based multidimensional adaptation prediction for scalable video coding using subjective quality evaluation. IEEE Transactions on Circuits and Systems for Video Technology 15(10), 1270–1279 (2005)CrossRefGoogle Scholar
  76. 76.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Proceedings of the Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2004., vol. 2, pp. 1398–1402. IEEE (2003)Google Scholar
  77. 77.
    Winkler, S.: Analysis of public image and video databases for quality assessment. IEEE Journal of Selected Topics in Signal Processing 6(6), 616–625 (2012)CrossRefGoogle Scholar
  78. 78.
    Winkler, S., Mohandas, P.: The evolution of video quality measurement: From PSNR to hybrid metrics. IEEE Transactions on Broadcasting 54(3), 660–668 (2008)CrossRefGoogle Scholar
  79. 79.
    Xue, Y., Ou, Y.F., Ma, Z., Wang, Y.: Perceptual video quality assessment on a mobile platform considering both spatial resolution and quantization artifacts. In: Proceedings of the 18th International Packet Video Workshop (PV), pp. 201–208. IEEE (2010)Google Scholar
  80. 80.
    Yang, F., Song, J., Wan, S., Wu, H.R.: Content-adaptive packet-layer model for quality assessment of networked video services. IEEE Journal of Selected Topics in Signal Processing 6(6), 672–683 (2012)CrossRefGoogle Scholar
  81. 81.
    Yang, F., Wan, S., Xie, Q., Wu, H.: No-reference quality assessment for networked video via primary analysis of bit stream. IEEE Transactions on Circuits and Systems for Video Technology 20(11), 1544–1554 (2010)CrossRefGoogle Scholar
  82. 82.
    You, F., Zhang, W., Xiao, J.: Packet loss pattern and parametric video quality model for IPTV. In: Proceedings of the Eighth IEEE/ACIS International Conference on Computer and Information Science, pp. 824–828. IEEE (2009)Google Scholar
  83. 83.
    Zhai, G., Cai, J., Lin, W., Yang, X., Zhang, W.: Three-dimensional scalable video adaptation via user-end perceptual quality assessment. IEEE Transactions on Broadcasting 54(3), 719–727 (2008)CrossRefGoogle Scholar
  84. 84.
    Zhai, G., Cai, J., Lin, W., Yang, X., Zhang, W., Etoh, M.: Cross-dimensional perceptual quality assessment for low bit-rate videos. IEEE Transactions on Multimedia 10(7), 1316–1324 (2008)CrossRefGoogle Scholar
  85. 85.
    Zhang, F., Li, S., Ma, L., Wong, Y.C., Ngan, K.N.: IVP subjective quality video database. http://ivp.ee.cuhk.edu.hk/research/database/subjective/ (2011)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Integrated TechnologyYonsei UniversityIncheonSouth Korea

Personalised recommendations