Conclusions and Perspectives



The main contribution of this book is offering an overview of current status, challenges, and new trends of visual quality assessment, from subjective assessment models to objective metrics, covering full-reference (FR), reduced-reference (RR), and no-reference (NR), multiply distorted images, contrast-changed images, mobile media, high dynamic range (HDR) images and videos, medical images, stereoscopic/3D videos, retargeted images and videos, computer graphics and animation quality assessment. Figure 10.1 diagrams the content presented in this book.


High Dynamic Range Tone Mapping High Dynamic Range Image Mobile Video High Dynamic Range Video 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Wang, F. Speranza, A. Vincent, T. Martin, and P. Blanchfield, “Toward optimal rate control: a study of the impact of spatial resolution, frame rate, and quantization on subjective video quality and bit rate,” in Visual Communications and Image Processing. International Society for Optics and Photonics, pp. 198–209, 2003.Google Scholar
  2. 2.
    P. Pérez, M. Jesús, J. R. Jaime, and G. Narciso, “Effect of packet loss in video quality of experience,” Bell Labs Technical Journal. vol. 16, no. 1, pp. 91–104, 2011.CrossRefGoogle Scholar
  3. 3.
    L. Goldmann, D. S. Francesca, D. Frederic, E. Touradj, T. Rudolf, and L. Mauro, “Impact of video transcoding artifacts on the subjective quality,” In Quality of Multimedia Experience (QoMEX), 2010 Second International Workshop on, pp. 52–57. IEEE, 2010.Google Scholar
  4. 4.
    B. Girod, “What’s wrong with mean-squared error?” In Digital Images and Human Vision, pp. 207–220. MIT press, 1993.Google Scholar
  5. 5.
    D. M. Chandler, “Seven challenges in image quality assessment: past, present, and future research” ISRN Signal Processing, 2013.Google Scholar
  6. 6.
    J. Allnatt, “Transmitted-picture assessment” Chichester, UK: Wiley, 1983.Google Scholar
  7. 7.
    B. Keelan, “Handbook of image quality: characterization and prediction,” CRC Press, 2002.Google Scholar
  8. 8.
    P. G. Engeldrum, “Psychometric scaling: a toolkit for imaging systems development,” Imcotek Press, 2000.Google Scholar
  9. 9.
    “Methodology for the subjective assessment of the quality of television pictures,” ITU-R Recommendation BT.500-11, Geneva, 2002.Google Scholar
  10. 10.
    “Subjective audiovisual quality assessment methods for multimedia applications,” ITU-T Recommendation P.911, Geneva, 1998.Google Scholar
  11. 11.
    “Subjective methods for the assessment stereoscopic 3DTV systems,” International Telecommunication Union, Geneva, 2012.Google Scholar
  12. 12.
    B. Keelan, and H. Urabe, “ISO 20462, A psychophysical image quality measurement standard,” Proc. SPIE 5294, pp. 181–189, 2004.CrossRefGoogle Scholar
  13. 13.
    S. Bech, H. Roelof, N. Marco, T. Kees, L. D. J. Henny, H. Paul, and K. P. Sakti, “Rapid perceptual image description (RaPID) method,” In Electronic Imaging: Science and Technology, pp. 317–328. International Society for Optics and Photonics, 1996.Google Scholar
  14. 14.
    A. B. Watson, “Efficiency of a model human image code,” JOSA A, vol. 4, no. 12, pp. 2401–2417, 1987.CrossRefGoogle Scholar
  15. 15.
    J. A. Redi, and I. Heynderickx, “Image integrity and aesthetics: towards a more encompassing definition of visual quality,” In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8291, No. 5, p. 35, 2012.Google Scholar
  16. 16.
    J. A. Solomon, A. B. Watson, and A. Ahumada, “Visibility of DCT basis functions: Effects of contrast masking,” In Data Compression Conference, DCC’94. Proceedings IEEE, pp. 361–370, Mar, 1994.Google Scholar
  17. 17.
    A. M. Haun, and E. Peli, “Is image quality a function of contrast perception?” In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, pp. 86510C–86510C, 2013.Google Scholar
  18. 18.
    P. G. Barten, “Contrast sensitivity of the human eye and its effects on image quality,” Washington: SPIE Optical Engineering Press, vol. 21, 1999.Google Scholar
  19. 19.
    T. N. Pappas, R. J. Safranek, and J. Chen, “Perceptual criteria for image quality evaluation,” Handbook of image and video processing, pp. 669–684, 2000.Google Scholar
  20. 20.
    H. Liu, and I. Heynderickx, “A perceptually relevant no-reference blockiness metric based on local image characteristics,” EURASIP Journal on Advances in Signal Processing, 2009.Google Scholar
  21. 21.
    Z. Wang, and X. Shang, “Spatial pooling strategies for perceptual image quality assessment,” In Image Processing, 2006 IEEE International Conference on, pp. 2945–2948, 2006.Google Scholar
  22. 22.
    Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” Image Processing, IEEE Transactions on, vol. 13, no. 4, pp. 600–612, 2004.CrossRefGoogle Scholar
  23. 23.
    R. Ferzli, and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB),” Image Processing, IEEE Transactions on, vol. 18, no. 4, pp. 717–728, 2009.CrossRefMathSciNetGoogle Scholar
  24. 24.
    U. Engelke, H. Kaprykowsky, H. J. Zepernick, and P. Ndjiki-Nya, “Visual attention in quality assessment,” Signal Processing Magazine, IEEE, vol. 28, no. 6, pp. 50–59, 2011.CrossRefGoogle Scholar
  25. 25.
    J. Redi, H. Liu, R. Zunino, ans I. Heynderickx, “Interactions of visual attention and quality perception,” In IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, pp. 78650S–78650S, Feb, 2011.Google Scholar
  26. 26.
    R. Desimone, and J. Duncan, “Neural mechanisms of selective visual attention,” Annual review of neuroscience, vol. 18, no. 1, pp. 193–222, 1995.CrossRefGoogle Scholar
  27. 27.
    H. Alers, J. Redi, H. Liu, I. Heynderickx, “Studying the effect of optimizing image quality in salient regions at the expense of background content,” J. Electron. Imaging, vol. 22, no. 4, pp. 043012–043012, 2013.CrossRefGoogle Scholar
  28. 28.
    M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative relationship between quality of experience and quality of service,” Network, IEEE, vol. 24, no. 2, pp. 36–41, 2010.CrossRefGoogle Scholar
  29. 29.
    H. J. Kim, D. H. Lee, J. M. Lee, K. H. Lee, W. Lyu, and S. G. Choi, “The QoE evaluation method through the QoS-QoE correlation model,” In Networked Computing and Advanced Information Management, 2008. NCM’08. Fourth International Conference on Network, IEEE, vol. 2, pp. 719–725, 2008.Google Scholar
  30. 30.
    M. Siller, and J. Woods, “Improving quality of experience for multimedia services by QoS arbitration on a QoE framework,” In Proc. of the 13th Packed Video Workshop, 2003.Google Scholar
  31. 31.
    G. Ghinea, and J. P. Thomas, “Quality of perception: user quality of service in multimedia presentations,” Multimedia, IEEE Transactions on, vol. 7, no. 4, pp. 786–789, 2005.CrossRefGoogle Scholar
  32. 32.
    H. Ridder, and S. Endrikhovski, “Image quality is FUN: reflections on fidelity, usefulness and naturalness,” In SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd, vol. 33, no. 1, pp. 986–989, May, 2002.Google Scholar
  33. 33.
    E. Fedorovskaya, C. Neustaedter, and W. Hao, “Image harmony for consumer images,” In Image Processing, 15th IEEE International Conference on, 2008.Google Scholar
  34. 34.
    P. Kortum, and M. Sullivan, “The effect of content desirability on subjective video quality ratings,” Human factors: the journal of the human factors and ergonomics society, vol. 52, no. 1, pp. 105–118, 2010.CrossRefGoogle Scholar
  35. 35.
    W. A. Mansilla, A. Perkis, ans T. Ebrahimi, “Implicit experiences as a determinant of perceptual quality and aesthetic appreciation,” In Proceedings of the 19th ACM international conference on Multimedia, pp. 153–162, Nov, 2011.Google Scholar
  36. 36.
    S. Mann and R. Picard, “Being ’Undigitial’ with Digital Cameras: Extending Dynamic Range by Combining Differently Exposed Pictures,” In: Proceedings of IS&T 48th Annual Conference, Society for Imaging Science and Technology, pp. 422–428, 1995.Google Scholar
  37. 37.
    Spheron, “Spheron HDR VR,” 2008, Available at:
  38. 38.
    G. Ward, “Real Pixels,” Graphic Gems, pp. 15–31, 1991.Google Scholar
  39. 39.
    G. Ward, “LogLuv Encoding for Full-Gamut High Dynamic Range Images,” Journal of Graphics Tools, vol. 3, no. 1, 1998.Google Scholar
  40. 40.
    “Industrial Light & Magic,” OpenEXR, 2008, Available at:
  41. 41.
    G. Ward and M. Simmons, “JPEG-HDR: A Backwards-Compatible High Dynamic Range Extension to JPEG,” In: Proceedings of ACM SIGGRAPH 2006 Courses, 2006.Google Scholar
  42. 42.
    N. Sugiyama, H. Kaida, X. Xue, T. Jinno, N. Adami, and M. Okuda, “HDR Compression Using Optimized Tone Mapping Model,” In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1001–1004, 2009.Google Scholar
  43. 43.
    R. Mantiuk, A. Efremov, K. Myszkowski, and H. Seidel, “Backward Compatible High Dynamic Range MPEG Video Compression,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 713–723, 2006.CrossRefGoogle Scholar
  44. 44.
    F. Banterle, K. Debattista, A. Artusi, S. Pattanaik, K. Myszkowski, P. Ledda, and A. Chalmers, “High Dynamic Range Imaging and Low Dynamic Range Expansion for Generating HDR Content,” Computer Graphics Forum, vol. 28, no. 8, 2009.Google Scholar
  45. 45.
    M. Cadik, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of HDR tone mapping methods using essential perceptual attributes,” Computers & Graphics, vol. 32, pp. 330–349, 2008.CrossRefGoogle Scholar
  46. 46.
    F. Drago, WL. Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators,” In: Proceedings of the SIGGRAPH 2003 conference on sketches & applications, New York, NY, USA: ACM Press, 2003.Google Scholar
  47. 47.
    J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating HDR rendering algorithms,” ACM Transactions on Applied Perception, vol. 4, no. 9, 2007.Google Scholar
  48. 48.
    A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” Human Vision & Electronic Imaging X, San Jose, CA, USA: SPIE, pp. 192–203, 2005.Google Scholar
  49. 49.
    P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators using a high dynamic range display,” In: Proceedings of the 32nd annual conference on computer graphics and interactive techniques, ACM Press, pp. 640–648, 2005.Google Scholar
  50. 50.
    M. Ashikhmin, J. Goyal, “A reality check for tone-mapping operators,” ACM Transactions on Applied Perception, vol. 3, no. 4, pp. 399–411, 2006.CrossRefGoogle Scholar
  51. 51.
    G. Eilertsen, R. Wanat, R. Mantiuk, and J. Unger, “Evaluation of tone mapping operators for HDR-video,” In: Computer Graphics Forum Special Issue Proceedings of Pacific Graphics, 2013.Google Scholar
  52. 52.
    M. Narwaria, M. Silva, P. Callet, and R. Pepion, “Tone mapping Based High Dynamic Range Image Compression: Study of Optimization Criterion and Perceptual Quality,” Optical Engineering (Special Issue on High Dynamic Range Imaging), vol. 52, no. 10, 2013.Google Scholar
  53. 53.
    M. Narwaria, M. Silva, P. Callet, and R. Pepion, “Impact of Tone Mapping In High Dynamic Range Image Compression,” In: Proc. Eighth International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), 2014.Google Scholar
  54. 54.
    R. Mantiuk, K. Jim, A. Rempel, and W. Heidrich, “HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions,” in ACM Transactions on Graphics (TOG), vol. 30, no. 4, 2011.Google Scholar
  55. 55.
    D. Tsai, Y. Lee, and E. Matsuyama, “Information entropy measure for evaluation of image quality,” J Digit Imaging, vol. 21, pp. 338–347, 2008.CrossRefGoogle Scholar
  56. 56.
    E. Samei, T. R. Nicole, T. D. James, and C. Ying, “Intercomparison of methods for image quality characterization. I. Modulation transfer functiona,” Medical physics, vol. 33, no. 5, pp. 1454–1465, 2006.CrossRefGoogle Scholar
  57. 57.
    U. Neitzel, G.-K. Susanne, B. Giovanni, and S. Ehsan, “Determination of the detective quantum efficiency of a digital x-ray detector: Comparison of three evaluations using a common image data set,” Medical physics, vol. 31, no. 8, pp. 2205–2211, 2004.CrossRefGoogle Scholar
  58. 58.
    M. Spahn, “Flat detectors and their clinical applications,” Eur Radiol, vol. 15, pp. 1934–1947, 2005.CrossRefGoogle Scholar
  59. 59.
    K. Fettery, and N. Hangiandreou, “Effect of x-ray spectra on the DQE of a computed radiography system,” Med Phys, vol. 28, pp. 241–249, 2001.CrossRefGoogle Scholar
  60. 60.
    T. O. Aydin, R. Mantiuk, K. Myszkowski, and H. P. Seidel, “Dynamic range independent image quality assessment,” ACM Transactions on Graphics (Proc. of SIGGRAPH), vol. 27, no. 3, 2008.Google Scholar
  61. 61.
    T. O. Aydin, M. Cadik, K. Myszkowski, and H. P. Seidel, “Video quality assessment for computer graphics applications,” ACM Transactions on Graphics (Proc. of SIGGRAPH), vol. 29, no. 6, 2010.Google Scholar
  62. 62.
    J. Korhonen, C. Mantel, N. Burini, and S. Forchhammer, “Searching for the preferred backlight intensity in liquid crystal displays with local backlight dimming,” In Quality of Multimedia Experience (QoMEX), 2013 Fifth IEEE International Workshop on, July, 2013.Google Scholar
  63. 63.
    A. Yoshida, V. Blanz, K. Myszkowski, and H. P. Seidel, “Perceptual evaluation of tone mapping operators with real-world scenes,” In Electronic Imaging 2005 International Society for Optics and Photonics, 2005.Google Scholar
  64. 64.
    I. Wechsung, M. Schulz, K. P. Engelbrecht, J. Niemann, ans S. Moller, “All users are (not) equal-the influence of user characteristics on perceived quality, modality choice and performance,” In Proceedings of the Paralinguistic Information and its Integration in Spoken Dialogue Systems Workshop, Springer New York, Jan, 2011.Google Scholar
  65. 65.
    J-S Lee, F. D. Simone, and T. Ebrahimi, “Subjective quality evaluation via paired comparison: application to scalable video coding,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp: 882–893, 2011.CrossRefGoogle Scholar
  66. 66.
    C-C Wu, K-T Chen, Y-C Chang, and C-L Lei, “Crowdsourcing multimedia qoe evaluation: A trusted framework,” IEEE transactions on multimedia, vol. 15, no. 5, pp: 1121–1137, 2013.CrossRefGoogle Scholar
  67. 67.
    Q. Xu, Q. Huang, T. Jiang, B. Yan, W. Lin, and Y. Yao, “Hodgerank on random graphs for subjective video quality assessment,” IEEE Transactions on Multimedia, vol. 14, no. 3, pp: 844–857, 2012.CrossRefGoogle Scholar
  68. 68.
    J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6, pp: 1–4, 2006.MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina
  2. 2.Huawei Noah’s Ark LabHong KongChina

Personalised recommendations