Exploring Social Influence and Incremental Online Persuasion on Twitter: A Longitudinal Study

  • Agnis Stibe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8640)


This paper outlines the second phase of an ongoing longitudinal research initiative aimed at exploring and describing why people use Twitter the way they do and what factors change their behaviors and attitudes over time. In a repeated online survey, 501 valid responses were collected from Twitter users. A comparative analysis of findings from both surveys verified persistent online persuasion patterns influencing both user behavior related to content generation and tweeting frequency, as well as user attitudes about Twitter being an influential tool to use in calling for action outside the virtual world. A comprehensive analysis of responses from 49 individuals who had participated in both surveys revealed underlying factors that had prompted changes in what they thought about Twitter, as well as their use behaviors. Further findings emphasized the role of social influence design principles and their capacity to explain changes that Twitter users had experienced over the period of two years.


Twitter online persuasion social influence design principles user behavior incremental longitudinal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achananuparp, P., Lim, E.P., Jiang, J., Hoang, T.A.: Who is Retweeting the Tweeters? Modeling, Originating, and Promoting Behaviors in the Twitter Network. ACM Transactions on Management Information Systems (TMIS) 3(3), 13 (2012)Google Scholar
  2. 2.
    Aral, S., Dellarocas, C., Godes, D.: Introduction to the Special Issue—Social Media and Business Transformation: A Framework for Research. Information Systems Research 24(1), 3–13 (2013)CrossRefGoogle Scholar
  3. 3.
    Aral, S., Walker, D.: Creating Social Contagion through Viral Product Design: A Randomized Trial of Peer Influence in Networks. Management Science 57(9), 1623–1639 (2011)CrossRefGoogle Scholar
  4. 4.
    Barnes, S.J., Böhringer, M.: Modeling Use Continuance Behavior in Microblogging Services: The Case of Twitter. Journal of Computer Information Systems 51(4), 1 (2011)Google Scholar
  5. 5.
    Bjørn-Andersen, N., Hansen, R.: The Adoption of Web 2.0 by Luxury Fashion Brands. In: Proceedings of CONFIRM, Paper 34 (2011)Google Scholar
  6. 6.
    Boyd, D., Golder, S., Lotan, G.: Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter. In: Proceedings of the 43rd Hawaii International Conference on System Sciences, Koloa, HI, USA (2010)Google Scholar
  7. 7.
    Chatfield, A.T., Brajawidagda, U.: Twitter Tsunami Early Warning Network: A Social Network Analysis of Twitter Information Flows. In: Proceedings of the 23rd Australasian Conference on Information Systems, Geelong, Victoria, Australia, pp. 1–10 (2012)Google Scholar
  8. 8.
    Chen, S.C., Yen, D.C., Hwang, M.I.: Factors Influencing the Continuance Intention to the Usage of Web 2.0: An Empirical Study. Computers in Human Behavior 28(3), 933–941 (2012)CrossRefGoogle Scholar
  9. 9.
    Cialdini, R.B., Kallgren, C.A., Reno, R.R.: A Focus Theory of Normative Conduct: A Theoretical Refinement and Reevaluation of the Role of Norms in Human Behavior. In: Zanna, M.P. (ed.) Advances in Experimental Social Psychology (24), pp. 201–234. Academic Press, New York (1991)Google Scholar
  10. 10.
    Culnan, M.J., McHugh, P.J., Zubillaga, J.I.: How Large US Companies Can Use Twitter and Other Social Media to Gain Business Value. MIS Quarterly Executive 9(4), 243–259 (2010)Google Scholar
  11. 11.
    Dou, Y., Niculescu, M., Wu, D.J.: Engineering Optimal Network Effects Via Social Media Features and Seeding in Markets for Digital Goods and Services. Inform. Systems Res. 24(1), 164–185 (2013)CrossRefGoogle Scholar
  12. 12.
    Fang, X., Hu, P.J.H., Li, Z.L., Tsai, W.: Predicting Adoption Probabilities in Social Networks. Information Systems Research 24(1), 128–145 (2013)CrossRefGoogle Scholar
  13. 13.
    Festinger, L.: A Theory of Social Comparison Processes. Human Relations 7(2), 117–140 (1954)CrossRefGoogle Scholar
  14. 14.
    Fosso Wamba, S., Carter, L.: Twitter Adoption and Use by SMEs: An Empirical Study. In: The 46 Hawaii International Conferences on System Sciences (HICSS), Maui, Hawaii, USA (2013)Google Scholar
  15. 15.
    Honeycutt, C., Herring, S.C.: Beyond Microblogging: Conversation and Collaboration Via Twitter. In: Proceedings of the 43rd Hawaii International Conference on System Sciences, Koloa, HI, USA (2010)Google Scholar
  16. 16.
    Huberman, B.A., Romero, D.M., Wu, F.: Social Networks that Matter: Twitter under the Microscope. First Monday 14(1) (2009), (retrieved on April 12, 2013)
  17. 17.
    Junco, R., Elavsky, C.M., Heiberger, G.: Putting Twitter to the Test: Assessing Outcomes for Student Collaboration, Engagement and Success. British Journal of Educational Technology (2012)Google Scholar
  18. 18.
    Krishnamurthy, B., Gill, P., Arlitt, M.: A Few Chirps about Twitter. In: Proceedings of the First Workshop on Online Social Networks, Seattle, WA, USA, pp. 19–24 (2008)Google Scholar
  19. 19.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a Social Network or a News Media? In: Proceedings of the 19th World-Wide Web (WWW) Conference, Raleigh, NC, USA, April 26-30 (2010)Google Scholar
  20. 20.
    Malone, T.W., Lepper, M.: Making Learning Fun: A Taxonomy of Intrinsic Motivations for Learning. In: Snow, R.E., Farr, M.J. (eds.) Aptitude, Learning and Instruction: III. Conative and Affective Process Analyses, pp. 223–253. Erlbaum, Hillsdale (1987)Google Scholar
  21. 21.
    Miller, A.R., Tucker, C.: Active Social Media Management: The Case of Health Care. Information Systems Research 24(1), 52–70 (2013)CrossRefGoogle Scholar
  22. 22.
    Oh, O., Tahmasbi, N., Rao, H.R., Vreede, G.D.: A Sociotechnical View of Information Diffusion and Social Changes: From Reprint to Retweet. In: Joey, F.G. (ed.) Proceedings of the 33th International Conference on Information Systems, Orlando, FL, USA (2012)Google Scholar
  23. 23.
    Ou, C.X., Davison, R.M., Cheng, N.C.: Why Are Social Networking Applications Successful: An Empirical Study of Twitter. In: Proceedings of the 15th Pacific Asia Conference on Information Systems (PACIS) (2011)Google Scholar
  24. 24.
    Pervin, N., Fang, F., Datta, A., Dutta, K., Vandermeer, D.: Fast, Scalable, and Context-Sensitive Detection of Trending Topics in Microblog Post Streams. ACM Transactions on Management Information Systems (TMIS) 3(4), 19 (2013)Google Scholar
  25. 25.
    Stibe, A., Oinas-Kukkonen, H.: Using Social Influence for Motivating Customers to Generate and Share Feedback. In: Spagnolli, A., Chittaro, L., Gamberini, L. (eds.) PERSUASIVE 2014. LNCS, vol. 8462, pp. 224–235. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Stibe, A., Oinas-Kukkonen, H., Bērziņa, I., Pahnila, S.: Incremental Persuasion Through Microblogging: A Survey of Twitter Users in Latvia. In: Proceedings of the 6th International Conference on Persuasive Technology: Persuasive Technology and Design: Enhancing Sustainability and Health, p. 8. ACM (2011)Google Scholar
  27. 27.
    Vatrapu, R.: Understanding Social Business. In: Emerging Dimensions of Technology Management, pp. 147–158. Springer India (2013)Google Scholar
  28. 28.
    Wirtz, B.W., Piehler, R., Ullrich, S.: Determinants of Social Media Website Attractiveness. Journal of Electronic Commerce Research 14(1) (2013)Google Scholar
  29. 29.
    Young, M.M.: Twitter Me: Using Micro-blogging to Motivate Teenagers to Exercise. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 439–448. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Zajonc, R.B.: Social Facilitation. Science 149, 269–274 (1965)CrossRefGoogle Scholar
  31. 31.
    Zeng, X., Wei, L.: Social Ties and User Content Generation: Evidence from Flickr. Inform. Systems Res. 24(1), 71–87 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Agnis Stibe
    • 1
  1. 1.Department of Information Processing Science, Faculty of Information Technology and Electrical EngineeringUniversity of OuluFinland

Personalised recommendations