Advertisement

A Cosmic Battery around Black Holes

  • Ioannis ContopoulosEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 414)

Abstract

Energetic astrophysical jets have always been associated with relatively strong large-scale magnetic fields that extract energy from the rotation of a central black hole and its surrounding accretion disk. This natural association does not answer the fundamental question what is the origin of the large-scale magnetic field. When the disk is non-diffusive, standard MHD advection can bring the field in from large distances, as attested by the multitude of ideal MHD simulations of magnetized astrophysical accretion disks. When this is not the case, however, the large-scale dipolar magnetic field expected at the origin of astrophysical jets is generated naturally by the anisotropic radiation pressure around the central black hole. In this Chapter, we discuss the scenario where the innermost part of the accretion disk generates and holds one polarity of the magnetic field, while the return polarity diffuses outward through the outer diffusive part of the disk. This is the Cosmic Battery first proposed by Contopoulos and Kazanas in 1998.

Keywords

Black Hole Accretion Disk Radiation Force Central Black Hole Large Scale Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramowicz, M.A., Ellis, G.F.R., Lanza, A.: ApJ 361, 470 (1990)ADSCrossRefGoogle Scholar
  2. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: ApJ 178, 347 (1972)ADSCrossRefGoogle Scholar
  3. Begelman, M.C., Armitage, P.J.: ApJ 782, 18 (2014)ADSCrossRefGoogle Scholar
  4. Bini, D., Jantzen, R.T., Stella, L.: CQGrav 26, 5009 (2009)ADSMathSciNetGoogle Scholar
  5. Bini, D., Geralico, A., Jantzen, R.T., Semerak, O., Stella, L.: CQGrav 28, 5008 (2011)MathSciNetGoogle Scholar
  6. Bisnovatyi-Kogan, G.S., Lovelace, R.V.E., Belinski, V.A.: ApJ 580, 380 (2002)ADSCrossRefGoogle Scholar
  7. Blandford, R.D.: MNRAS 176, 465 (1976)ADSCrossRefGoogle Scholar
  8. Blandford, R.D.: PThPhS 143, 182 (2001)ADSGoogle Scholar
  9. Blandford, R.D.: To the Lighthouse. In: Gilfanov, M., Sunyaev, R., Churazov, E. (eds.) Lighthouses of the Universe, vol. 381. Springer, Berlin (2002)Google Scholar
  10. Blandford, R.D., Payne, D.G.: MNRAS 199, 883 (1982)ADSCrossRefzbMATHGoogle Scholar
  11. Blandford, R.D., Znajek, R.L.: MNRAS 179, 433 (1977)ADSCrossRefGoogle Scholar
  12. Brocksopp, C., et al.: MNRAS 331, 765 (2002)ADSCrossRefGoogle Scholar
  13. Contopoulos, J.: ApJ 432, 508 (1994)ADSCrossRefGoogle Scholar
  14. Contopoulos, J.: ApJ 450, 616 (1995)ADSCrossRefGoogle Scholar
  15. Contopoulos, J. ApJ 460, 185 (1996)ADSCrossRefGoogle Scholar
  16. Contopoulos, I., Kazanas, D.: ApJ 508, 859 (1998)ADSCrossRefGoogle Scholar
  17. Contopoulos, J., Lovelace, R.V.E.: ApJ 429, 139 (1994)ADSCrossRefGoogle Scholar
  18. Contopoulos, I., Kazanas, D., Christodoulou, D.M.: ApJ 652, 1451 (2006)ADSCrossRefGoogle Scholar
  19. Contopoulos, I., Christodoulou, D.M., Kazanas, D., Gabuzda, D.C.: ApJ 702, L148 (2009)ADSCrossRefGoogle Scholar
  20. Contopoulos, I., Nathanail, A., Katsanikas, M., Koutsantoniou, L.E.: (2014, in preparation)Google Scholar
  21. Dexter, J., McKinney, J.C., Markoff, S., Tchekhovskoy, A.: MNRAS 440, 2185 (2014)ADSCrossRefGoogle Scholar
  22. Fender, R.P., Belloni, T.M., Gallo, E.: MNRAS 355, 1105 (2004)ADSCrossRefGoogle Scholar
  23. Fender, R.P., Homan, J., Belloni, T.M.: MNRAS 396, 1370 (2009)ADSCrossRefGoogle Scholar
  24. Ferreira, J., Pelletier, G.: A& A 295, 807 (1995)ADSGoogle Scholar
  25. Gabuzda, D.C., Christodoulou, D.M., Contopoulos, I., Kazanas, D.: JPhCS 355, 2019 (2012)ADSGoogle Scholar
  26. Giannios, D.: A&A 437, 1007 (2005)ADSCrossRefGoogle Scholar
  27. Goodson, A.P.,Winglee, R.M., Bohm, K.-H.: ApJ 489, 199 (1997)ADSCrossRefGoogle Scholar
  28. Hameury, J.-M., Barret, D., Lasota, J.-P., McClintock, J.E., Menou, K., Motch, C., Olive, J.-F., Webb, N.: A&A 399, 631 (2003)ADSCrossRefGoogle Scholar
  29. Komissarov, S.S.: JKPhS 54, 2503 (2008)ADSGoogle Scholar
  30. Kong, A.K.H., McClintock, J.E., Garcia, M.R., Murray, S.S., Barret, D.: ApJ 570, 277 (2002)ADSCrossRefGoogle Scholar
  31. Koutsantoniou, L.E., Contopoulos, I.: ApJ 794, 27 (2014)ADSCrossRefGoogle Scholar
  32. Kronberg, P.P., Lovelace, R.V.E., Lapenta, G., Colgate, S.A.: ApJ 741, 15 (2011)ADSCrossRefGoogle Scholar
  33. Kylafis, N.D., Contopoulos, I., Kazanas, D., Christodoulou, D.M.: A&A 538, 5 (2012)ADSCrossRefGoogle Scholar
  34. Lamb, F.K., Miller, M.C.: ApJ 439, 828 (1995)ADSCrossRefGoogle Scholar
  35. Lasota, J.-P. et al.: PhysRevD 89, 024041 (2014)ADSGoogle Scholar
  36. Li, Z.-Y.: ApJ 444, 848 (1995)ADSCrossRefGoogle Scholar
  37. Lovelace, R.V.E., Romanova, M.M., Newman, W.I.: ApJ 437, 136 (1994)ADSCrossRefGoogle Scholar
  38. Lovelace, R.V.E.: Nature 262, 649 (1976)ADSCrossRefGoogle Scholar
  39. Lovelace, R.V.E., Rothstein, D.M., Bisnovatyi-Kogan, G.S.: ApJ 701, 885 (2009)ADSCrossRefGoogle Scholar
  40. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: MNRAS 267, 235 (1994)ADSCrossRefGoogle Scholar
  41. Lynden-Bell, D.: MNRAS 369, 1167 (1996)ADSCrossRefGoogle Scholar
  42. MacDonald, D., Thorne, K.S.: MNRAS 198, 345 (1982)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  43. Matsumoto, R., Uchida, Y., Hirose, S., Shibata, K., Hayashi, M.R., Ferrari, A., Bodo, G., Norman, C.: ApJ 461, 115 (1996)ADSCrossRefGoogle Scholar
  44. McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: MNRAS 423, 3083 (2012)ADSCrossRefGoogle Scholar
  45. Miller, M.C., Lamb, F.K.: ApJ 413, L43 (1993)ADSCrossRefGoogle Scholar
  46. Miller, M.C., Lamb, F.K.: ApJ 470, 1033 (1996)ADSCrossRefGoogle Scholar
  47. Miyamoto, S., Kitamoto, S., Hayashida, K., Egoshi, W.: ApJ 442, L13 (1995)ADSCrossRefGoogle Scholar
  48. Narayan, R., Yi, I.: ApJ 428L, 13 (1994)ADSCrossRefGoogle Scholar
  49. Nathanail, A., Contopoulos, I.: ApJ 788, 186 (2014)ADSCrossRefGoogle Scholar
  50. Newman, W.I., Newman, A.L., Lovelace, R.V.E.: ApJ 392, 699 (1992)CrossRefGoogle Scholar
  51. Pooley, G.G., Fender, R.P.: GRS 1915+105: Flares, QPOs and Other Events at 15 GHz. In: Zensus, J.A., Taylor, G.B., Wrobel, J.M. (eds.) IAU Colloq. 164, Radio Emission from Galactic and Extragalactic Compact Sources. ASP Conference Series, vol. 144, p. 333. ASP, San Francisco (1998)Google Scholar
  52. Poynting, J.H.: MNRAS 64, A1 (1903)ADSCrossRefGoogle Scholar
  53. Remillard, R.A., McClintock, J.E.: ARA&A 44, 49 (2006)ADSCrossRefGoogle Scholar
  54. Robertson, H.P.: MNRAS 97, 423 (1937)ADSCrossRefzbMATHGoogle Scholar
  55. Rushton, A., Spencer, R., Fender, R., Pooley, G.: A&A 524, A29 (2010)ADSCrossRefGoogle Scholar
  56. Rybicki, G.B., Lightman, A.P.: Radiative Processes in Astrophysics. Wiley, New York (1986)Google Scholar
  57. Shakura, N.I., Sunyaev, R.A.: A&A 24, 337 (1973)ADSGoogle Scholar
  58. Shibata, K., Tajima, T., Matsumoto, R.: ApJ 350, 295 (1990)ADSCrossRefGoogle Scholar
  59. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: MNRAS 418, 79 (2011)ADSCrossRefGoogle Scholar
  60. Ueda, Y., et al.: ApJ 571, 918 (2002)ADSCrossRefGoogle Scholar
  61. Vainshtein, S.I., Cattaneo, F.: ApJ 393, 165 (1992)ADSCrossRefGoogle Scholar
  62. van Ballegooijen, A.A.: Magnetic fields in the accretion disks of cataclysmic variables. In: Belvedere, G. (ed.) Accretion Disks and Magnetic Fields in Astrophysics, p. 99. Dordrecht, Kluwer (1989)Google Scholar
  63. Zrake, J., MacFadyen, A.: ApJ 744, 32 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Center for Astronomy and Applied MathematicsAcademy of AthensAthensGreece

Personalised recommendations