Advertisement

X-Ray Binary Phenomenology and Their Accretion Disk Structure

  • Demosthenes KazanasEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 414)

Abstract

We propose a scheme that accounts for the broader spectral and temporal properties of galactic black hole X-ray transients. The fundamental notion behind this proposal is that the mass accretion rate, \(\dot{M}\), of the disks of these systems depends on the radius, as it has been proposed for ADIOS. We propose that, because of this dependence of \(\dot{M}\) on radius, an accretion disk which is geometrically thin and cool at large radii converts into a geometrically thick, advection dominated, hot disk interior to a transition radius at which the local accretion rate drops below the square of the viscosity parameter, a condition for the existence of advection dominated flows. We argue also that such a transition requires in addition that the vertical disk support be provided by magnetic fields. As discussed in other chapters of this book, the origin of these fields is local to the disk by the Poynting Robertson battery, thereby providing a complete self-contained picture for the spectra and evolution of these systems.

Keywords

Black Hole Accretion Disk Accretion Rate Active Galactic Nucleus Disk Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramowicz, M.A., Fragile, P.C.: Foundations of black hole accretion disk theory. Living Rev. Relativ. 16, 1–88 (2013)ADSCrossRefGoogle Scholar
  2. Abramowicz, M.A., Czerny, B., Lasota, J.P., Szuszkiewicz, E.: Slim accretion disks. Astrophys. J. 332, 646–658 (1988)ADSCrossRefGoogle Scholar
  3. Bai, X-N., Stone, J.M.: Local study of accretion disks with a strong vertical magnetic field: magnetorotational instability and disk outflow. Astrophys. J. 767, 30–48 (2013)ADSCrossRefGoogle Scholar
  4. Balbus, S., Hawley, J.: A powerful local shear instability in weakly magnetized disks. Astrophys. J. 376, 214–233 (1991)ADSCrossRefGoogle Scholar
  5. Behar, E.: Density profiles in Seyfert outflows. Astrophys. J. 703, 1346–1351 (2009)ADSCrossRefGoogle Scholar
  6. Berkeley, A.J., Kazanas, D., Ozik, J.: Modeling the X-ray-ultraviolet correlations in NGC 7469. Astrophys. J. 535, 712–720 (2000)ADSCrossRefGoogle Scholar
  7. Blandford, R.D., Begelman, M.C.: On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 211, P1–P5 (1999)CrossRefGoogle Scholar
  8. Christodoulou, D., Contopoulos, I., Kazanas, D.: Interchange method in incompressible magnetized couette flow: structural and magnetorotational instabilities. Astrophys. J. 462, 865–873 (1996)ADSCrossRefGoogle Scholar
  9. Christodoulou, D.M., Contopoulos, I., Kazanas, D.: Simulations of the poynting-robertson cosmic battery in resistive accretion disks. Astrophys. J. 674, 388–407 (2008)ADSCrossRefGoogle Scholar
  10. Contopoulos, I., Kazanas, D.: A cosmic battery. Astrophys. J. 508, 859–863 (1999)ADSCrossRefGoogle Scholar
  11. Contopoulos, I., Kazanas, D., Christodoulou, D.M.: The cosmic battery revisited. Astrophys. J. 652, 1451–1456 (2006)ADSCrossRefGoogle Scholar
  12. Done, C., Gierlinski, M., Kubota, A.: Modelling the behaviour of accretion flows in X-ray binaries. Astron. Astrophys. Rev. 15, 1–66 (2007)ADSCrossRefGoogle Scholar
  13. Esin, A.A., McClintock, J.E., Narayan, R.: Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to Nova Muscae 1991. Astrophys. J. 489, 865–889 (1997)ADSCrossRefGoogle Scholar
  14. Fukumura, K., Kazanas, D., Contopoulos, I., Behar, E.: MHD accretion disk winds as X-ray absorbers in active galactic nuclei. Astrophys. J. 715, 636–650 (2010a)ADSCrossRefGoogle Scholar
  15. Fukumura, K., Kazanas, D., Contopoulos, I., Behar, E.: Modeling high-velocity QSO absorbers with photoionized MHD disk winds. Astrophys. J. 723, L228–L232 (2010b)ADSCrossRefGoogle Scholar
  16. Galeev, A.A., Rosner, R., Vaiana, G.S.: Structured coronae of accretion disks. Astrophys. J. 229, 318–326 (1979)ADSCrossRefGoogle Scholar
  17. Gilfanov, M., Arefiev, V.: X-ray Variability, Viscous Time Scale and Lindblad Resonances in LMXBs. arXiv:astro-ph/0501215 (2005)Google Scholar
  18. Haardt, F., Maraschi, L.: X-Ray spectra from two-phase accretion disks. Astrophys. J. 413, 507–517 (1993)ADSCrossRefGoogle Scholar
  19. Kylafis, N.D., Contopoulos, I., Kazanas, D., Christodoulou, D.M.: Formation and destruction of jets in X-ray binaries. Astron. Astrophys. 538, A5–A9 (2012)ADSCrossRefGoogle Scholar
  20. Narayan, R., Yi, I.: Advection-dominated accretion: a self-similar solution. Astrophys. J. 428, L13–L16 (1994)ADSCrossRefGoogle Scholar
  21. Narayan, R., Yi, I.: Advection-dominated accretion: self-similarity and bipolar outflows. Astrophys. J. 444, 231–243 (1995)ADSCrossRefGoogle Scholar
  22. Novikov, I.D., Thorn, K.S.: Astrophysics of black holes. In: DeWitt, DeWitt (eds.) Black Holes, p. 343–450. Gordon and Breach, New York (1972)Google Scholar
  23. Pariev, V.I., Blackman, E.G., Boldyrev, S.A.: Extending the Shakura-Sunyaev approach to a strongly magnetized accretion disk model. Astron. Astrophys. 407, 403–421 (2003)ADSCrossRefGoogle Scholar
  24. Shakura, N., Sunyaev, R.: Black holes in binary systems. Obs. Appear. Astron. Astrophys. 24, 337–355 (1973)ADSGoogle Scholar
  25. Steffen, A.T., et al.: The X-ray-to-optical properties of optically selected AGN over wide luminosity and redshift ranges. Astron. J. 131, 2826–2842 (2006)ADSCrossRefGoogle Scholar
  26. Svensson, R., Zdziarski, A.A.: Black hole accretion disks with coronae. Astrophys. J. 436, 599–606 (1994)ADSCrossRefGoogle Scholar
  27. Titarchuk, L.G., Mastichiadis, A., Kylafis, N.: X-ray spectral formation in a converging fluid flow: spherical accretion into black holes. Astrophys. J. 487, 834–846 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NASA, Goddard Space Flight Center, Code 663GreenbeltUSA

Personalised recommendations