Advertisement

Theory of Relativistic Jets

  • Nektarios VlahakisEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 414)

Abstract

Relativistic jets can be modeled as magnetohydrodynamic flows. We analyze the related equations and discuss the involved acceleration mechanisms, their relation to the collimation, to the jet confinement by its environment, and to possible rarefaction waves triggered by pressure imbalances.

Keywords

Accretion Disk Rarefaction Wave Lorentz Factor Light Surface Poloidal Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aloy, M.A., Rezzolla, L.: A powerful hydrodynamic booster for relativistic jets. ApJ 640, L115 (2006). doi:10.1086/503608ADSCrossRefGoogle Scholar
  2. Bekenstein, J.D., Oron, E.: New conservation laws in general-relativistic magnetohydrodynamics. Phys. Rev. D 18, 1809 (1978)ADSCrossRefGoogle Scholar
  3. Beskin, V.S.: MHD flows in compact astrophysical objects: accretion, winds and jets. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  4. Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199, 883 (1982)ADSCrossRefzbMATHGoogle Scholar
  5. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. MNRAS 179, 433 (1977)ADSCrossRefGoogle Scholar
  6. Camenzind, M.: Centrifugally driven MHD-winds in active galactic nuclei. A&A 156, 137 (1986)ADSGoogle Scholar
  7. Contopoulos, J.: Magnetically driven relativistic jets and winds: exact solutions. ApJ 432, 508 (1994). doi:10.1086/174590ADSCrossRefGoogle Scholar
  8. Fendt, C., Ouyed, R.: Ultrarelativistic magnetohydrodynamic jets in the context of gamma-ray bursts. ApJ 608, 378 (2004). doi:10.1086/386363ADSCrossRefGoogle Scholar
  9. Granot, J.: Interaction of a highly magnetized impulsive relativistic flow with an external medium. MNRAS 421, 2442 (2012). doi:10.1111/j.1365-2966.2012.20473.xADSCrossRefGoogle Scholar
  10. Granot, J., Komissarov, S.S., Spitkovsky, A.: Impulsive acceleration of strongly magnetized relativistic flows. MNRAS 411, 1323 (2011). doi:10.1111/j.1365-2966.2010.17770.xADSCrossRefGoogle Scholar
  11. Komissarov, S.S., Barkov, M.V., Vlahakis, N., Königl, A.: Magnetic acceleration of relativistic active galactic nucleus jets. MNRAS 380, 51 (2007). doi:10.1111/j.1365-2966.2007.12050.xADSCrossRefGoogle Scholar
  12. Komissarov, S.S., Vlahakis, N., Königl, A., Barkov, M.V.: Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. MNRAS 394, 1182 (2009). doi:10.1111/j.1365-2966.2009.14410.xADSCrossRefGoogle Scholar
  13. Komissarov, S.S., Vlahakis, N., Königl, A.: Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources. MNRAS 407, 17 (2010). doi:10.1111/j.1365-2966.2010.16779.xADSCrossRefGoogle Scholar
  14. Li, Z.Y., Chiueh, T., Begelman, M.C.: Electromagnetically driven relativistic jets - a class of self-similar solutions. ApJ 394, 459 (1992). doi:10.1086/171597ADSCrossRefGoogle Scholar
  15. Lovelace, R.V.E., Mehanian, C., Mobarry, C.M., Sulkanen, M.E.: Theory of axisymmetric magnetohydrodynamic flows - disks. ApJS 62, 1 (1986). doi:10.1086/191132ADSCrossRefGoogle Scholar
  16. Lyutikov, M.: Simple waves in relativistic fluids. Phys. Rev. E 82(5), 056305 (2010). doi:10.1103/PhysRevE.82.056305ADSCrossRefGoogle Scholar
  17. Marti, J.M., Muller, E.: Analytical solution of the Riemann problem in relativistic hydrodynamics. J. Fluid Mech. 258, 317 (1994). doi:10.1017/S0022112094003344ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. Matsumoto, J., Masada, Y., Shibata, K.: Effect of interacting rarefaction waves on relativistically hot jets. ApJ 751, 140 (2012). doi:10.1088/0004-637X/751/2/140ADSCrossRefGoogle Scholar
  19. Michel, F.C.: Relativistic stellar-wind torques. ApJ 158, 727 (1969)ADSCrossRefGoogle Scholar
  20. Millas, D., Katsoulakos, G., Lingri, D., Karampelas, K., Vlahakis, N.: Solutions of the wind equation in relativistic magnetized jets. Int. J. Mod. Phys. Conf. Ser. 28, 1460200 (2014). doi:10.1142/S2010194514602002CrossRefGoogle Scholar
  21. Mizuno, Y., Hardee, P., Hartmann, D.H., Nishikawa, K.I., Zhang, B.: A magnetohydrodynamic boost for relativistic jets. ApJ 672, 72 (2008). doi:10.1086/523625ADSCrossRefGoogle Scholar
  22. Okamoto, I.: Relativistic centrifugal winds. MNRAS 185, 69 (1978)ADSCrossRefGoogle Scholar
  23. Sapountzis, K., Vlahakis, N.: Rarefaction acceleration in magnetized gamma-ray burst jets. MNRAS 434, 1779 (2013). doi:10.1093/mnras/stt1142ADSCrossRefGoogle Scholar
  24. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. MNRAS 388, 551 (2008). doi:10.1111/j.1365-2966.2008.13425.xADSCrossRefGoogle Scholar
  25. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: Efficiency of magnetic to kinetic energy conversion in a monopole magnetosphere. ApJ 699, 1789 (2009). doi:10.1088/0004-637X/699/2/1789ADSCrossRefGoogle Scholar
  26. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Magnetohydrodynamic simulations of gamma-ray burst jets: beyond the progenitor star. NewA 15, 749 (2010). doi:10.1016/j.newast.2010.03.001ADSCrossRefGoogle Scholar
  27. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS 418, L79 (2011). doi:10.1111/j.1745-3933.2011.01147.xADSCrossRefGoogle Scholar
  28. Toma, K., Takahara, F.: Efficient acceleration of relativistic magnetohydrodynamic jets. Prog. Theor. Exp. Phys. 2013(8), 083E02 (2013). doi:10.1093/ptep/ptt058Google Scholar
  29. Vlahakis, N.: The efficiency of the magnetic acceleration in relativistic jets. Ap&SS 293, 67 (2004a). doi:10.1023/B:ASTR.0000044653.77654.fbADSCrossRefGoogle Scholar
  30. Vlahakis, N.: Ideal magnetohydrodynamic solution to the σ problem in crab-like pulsar winds and general asymptotic analysis of magnetized outflows. ApJ 600, 324 (2004b). doi:10.1086/379701ADSCrossRefGoogle Scholar
  31. Vlahakis, N., Königl, A.: Relativistic magnetohydrodynamics with application to gamma-ray burst outflows. I. theory and semianalytic trans-alfvénic solutions. ApJ 596, 1080 (2003a). doi:10.1086/378226Google Scholar
  32. Vlahakis, N., Königl, A.: Relativistic magnetohydrodynamics with application to gamma-ray burst outflows. II. semianalytic super-alfvénic solutions. ApJ 596, 1104 (2003b). doi:10.1086/378227Google Scholar
  33. Vlahakis, N., Königl, A.: Magnetic driving of relativistic outflows in active galactic nuclei. I. interpretation of parsec-scale accelerations. ApJ 605, 656 (2004). doi:10.1086/382670Google Scholar
  34. Zenitani, S., Hesse, M., Klimas, A.: Scaling of the anomalous boost in relativistic jet boundary layer. ApJ 712, 951 (2010). doi:10.1088/0004-637X/712/2/951ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Physics, Department of Astrophysics, Astronomy and MechanicsUniversity of AthensAthensGreece

Personalised recommendations