Black Hole Magnetospheres

  • Brian PunslyEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 414)


This chapter compares and contrasts winds and jets driven by the two distinct components of the black magnetosphere: the event horizon magnetosphere (the large scale magnetic field lines that thread the event horizon) and the ergospheric disk magnetosphere associated with poloidal magnetic flux threading plasma near the equatorial plane of the ergosphere. The power of jets from the two components as predicted from single-fluid, perfect MHD numerical simulations are compared. The decomposition of the magnetosphere into these two components depends on the distribution of large scale poloidal magnetic flux in the ergosphere. However, the final distribution of magnetic flux in a black hole magnetosphere depends on physics beyond these simple single-fluid treatments, non-ideal MHD (eg, the dynamics of magnetic field reconnection and radiation effects) and two-fluid effects (eg, ion coupled waves and instabilities in the inner accretion flow). In this chapter, it is emphasized that magnetic field line reconnection is the most important of these physical elements. Unfortunately, in single-fluid perfect MHD simulations, reconnection is a mathematical artifact of numerical diffusion and is not determined by physical processes. Consequently, considerable calculational progress is required before we can reliably assess the role of each of these components of black hole magnetospheres in astrophysical systems.


Black Hole Magnetic Flux Field Line Event Horizon Accretion Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baumann, G., Galsgaard, K. Norlund, A.: 3D Solar null point reconnection MHD simulations. Sol. Phys. 284, 467 (2013)ADSCrossRefGoogle Scholar
  2. Beckwith, K., Hawley, J., Krolik, J.: The influence of magnetic field geometry on the evolution of black hole accretion flows: similar disks, drastically different jets. ApJ 678, 1180 (2008)ADSCrossRefGoogle Scholar
  3. Beckwith, K., Hawley, J., Krolik, J.: Transport of large-scale poloidal flux in black hole accretion. ApJ 707, 428 (2009)ADSCrossRefGoogle Scholar
  4. Bicknell, G.: On the relationship between BL lacertae objects and fanaroff-riley I radio galaxies. ApJ 422, 542 (1994)ADSCrossRefGoogle Scholar
  5. Blandford, R., Znajek, R.: Electromagnetic extraction of energy from kerr black holes. MNRAS. 179, 433 (1977)ADSCrossRefGoogle Scholar
  6. Contopoulos, I., Papadopoulos, D.: The cosmic battery and the inner edge of the accretion disc. MNRAS. 425, 147 (2012)ADSCrossRefGoogle Scholar
  7. De Villiers, J-P., Hawley, J., Krolik, J.H.: Magnetically driven accretion flows in the kerr metric. I. models and overall structure. ApJ 599, 1238 (2003)Google Scholar
  8. Esin, A., McClintock, J.E., Narayan, R.: Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to nova muscae 1991. ApJ 489, 865 (1997)ADSCrossRefGoogle Scholar
  9. Hawley, J., Krolik, J.: Magnetically driven jets in the kerr metric. ApJ 641, 103 (2006)ADSCrossRefGoogle Scholar
  10. Hirose, S., Krolik, K., DeVilliers, J., Hawley, J.: Magnetically driven accretion flows in the kerr metric. II. structure of the magnetic field. ApJ 606, 1083 (2004)Google Scholar
  11. Igumenshchev, I.V.: Magnetically arrested disks and the origin of poynting jets: a numerical study. ApJ 677, 317 (2008)ADSCrossRefGoogle Scholar
  12. Igumenshchev, I.V., Narayan, R., Abramowicz, M.A.: hree-dimensional magnetohydrodynamic simulations of radiatively inefficient accretion flows. ApJ 592, 1042 (2003)Google Scholar
  13. Krolik, J., Hawley, J., Hirose, S.: Magnetically driven accretion flows in the kerr metric. IV. dynamical properties of the inner disk. ApJ 622, 1008 (2005)Google Scholar
  14. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: Magnetic field dragging in accretion discs. MNRAS 267, 235 (1994)ADSCrossRefGoogle Scholar
  15. Malakit, K., Cassak, P., Shav, M., Drake, F.: The hall effect in magnetic reconnection: hybrid versus hall-less hybrid simulations. Geosphys. Res. Lett. 36, L07107 (2009). doi:10.1029/2009GL037538ADSGoogle Scholar
  16. McKinney, J.: General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. MNRAS 368, 1561 (2006)ADSCrossRefGoogle Scholar
  17. McKinney, J., Blandford, R.: Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. MNRAS Lett. 394, 126 (2009)ADSCrossRefGoogle Scholar
  18. McKinney, J., Gammie, C.: A measurement of the electromagnetic luminosity of a kerr black hole. ApJ 611, 977 (2004)ADSCrossRefGoogle Scholar
  19. McKinney, J., Tchekhovskoy, A., Blandford, R.: General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. MNRAS 423, 3083 (2012)ADSCrossRefGoogle Scholar
  20. Meier, D.L.: A magnetically switched, rotating black hole model for the production of extragalactic radio jets and the fanaroff and riley class division. ApJ 522, 753 (1999)ADSCrossRefGoogle Scholar
  21. Meier, D.L., Koide, S., Uchida, Y.: Magnetohydrodynamic production of relativistic jets. Science 291, 84 (2001)ADSCrossRefGoogle Scholar
  22. Penrose, R.: Extraction of rotational energy from a black holes. Nuovo Cimento Nuovo Cimento Rivista Serie 1, 252 (1969)ADSGoogle Scholar
  23. Phinney, E.S.: Ph.D. Dissertation, A theory of radio sources. University of Cambridge (1983)Google Scholar
  24. Pontin, D.I.: Three-dimensional magnetic reconnection regimes: a review, Adv. Space Res. 47, 1508 (2011)ADSCrossRefGoogle Scholar
  25. Punsly, B.: Magnetically dominated accretion onto black holes. ApJ 372, 424 (1991)ADSCrossRefGoogle Scholar
  26. Punsly, B.: Minimum torque and minimum dissipation black hole-driven winds. ApJ 506, 790 (1998)ADSCrossRefGoogle Scholar
  27. Punsly, B.: Three-dimensional simulations of ergospheric disk-driven poynting jets. ApJL 661, 21 (2007)ADSCrossRefGoogle Scholar
  28. Punsly, B.: Black hole gravitohydromagnetics, 2nd edn. Springer, New York (2008)zbMATHGoogle Scholar
  29. Punsly, B., Coroniti, F.V.: Electrodynamics of the event horizon. Phys. Rev. D 40, 3834 (1989)ADSCrossRefMathSciNetGoogle Scholar
  30. Punsly, B., Coroniti, F.V.: Relativistic winds from pulsar and black hole magnetospheres. ApJ 350, 518 (1990a)ADSCrossRefGoogle Scholar
  31. Punsly, B., Coroniti, F.V.: Ergosphere-driven winds. ApJ 354, 583 (1990b)ADSCrossRefGoogle Scholar
  32. Punsly, B., Igumenshchev, I.V., Hirose, S.: Three-dimensional simulations of vertical magnetic flux in the immediate vicinity of black holes. ApJ 704, 1065 (2009)ADSCrossRefGoogle Scholar
  33. Rothstein, D., Lovelace, R.V.E.: Advection of magnetic fields in accretion disks: not so difficult after all. ApJ 677, 1221 (2008)ADSCrossRefGoogle Scholar
  34. Sikora, M., Begelman, M.: Magnetic flux paradigm for radio loudness of active galactic nuclei. ApJL 764, 24 (2013)ADSCrossRefGoogle Scholar
  35. Stix, T.: Waves in plasmas. American Institue of Physics, New York (1992)Google Scholar
  36. Syrovatskii, S.: Pinch sheets and reconnection in astrophysics. ARA& A 19, 163 (1981)ADSCrossRefGoogle Scholar
  37. Tchekhovskoy, A., McKinney, J.: Prograde and retrograde black holes: whose jet is more powerful?. MNRAS Lett. 423, 55 (2012)ADSCrossRefGoogle Scholar
  38. Tchekhovskoy, A., Narayan, R., McKinney, J.: Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. ApJ 711, 50 (2010)ADSCrossRefGoogle Scholar
  39. Tchekhovskoy, A., Narayan, R., McKinney, J.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS Lett. 418, 79 (2011)ADSCrossRefGoogle Scholar
  40. Threlfall, J. et al.: Nonlinear wave propagation and reconnection at magnetic X-points in the hall MHD regime. A& A 544, 24 (2012)ADSCrossRefGoogle Scholar
  41. Uzdensky, D.: Magnetic reconnection in extreme astrophysical environments. Space Sci Rev. (2011). doi:10.1007/s11214-011-9744-5. Published online 25 Feb 2011
  42. van Ballegooijen, A.A.: In: Belvedere, G. (ed.) Accretion disks and magnetic fields in astrophysics. ASSL, vol. 156, p. 99. Kluwer, Dordrecht (1989)Google Scholar
  43. Wilmot-Smith, A.L., Pontin, D.I., Hornig, G.: Dynamics of braided coronal loops. I. onset of magnetic reconnection, A& A 516, A5 (2010)Google Scholar
  44. Yamada, M.: Progress in understanding magnetic reconnection in laboratory and space astrophysical plasmas. Phys. Plasmas 14, 058102 (2007)ADSCrossRefGoogle Scholar
  45. Zenitani, S., Hesse, M., Klimas, A., Kuznetsova, M.: New measure of the dissipation region in collisionless magnetic reconnection. Phys. Rev. Lett. 106, 195003 (2011)ADSCrossRefGoogle Scholar
  46. Zenitani, S., Shinohara, I., Nagai, T., Wada, T.: Kinetic aspects of the ion current layer in a reconnection outflow exhaust. Phys. Plasmas 20, 092120 (2013). doi:10.1063/1.4821963ADSCrossRefGoogle Scholar
  47. Zocco, A., Schekochihin, A.: Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Palos Verdes EstatesUSA
  2. 2.ICRANetPescaraItaly

Personalised recommendations