Launching of Active Galactic Nuclei Jets

  • Alexander TchekhovskoyEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 414)


As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.


Magnetic Flux Accretion Disk Mass Accretion Rate Accretion Flow Light Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



AT thanks James Steiner for providing data for Fig. 3.12 and the detailed comments on the manuscript that substantially improved its clarity, Denise Gabuzda for her encouragement that made this work possible, Alexander Philippov for helpful suggestions. AT was supported by NASA through Einstein Postdoctoral Fellowship grant number PF3-140115 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060, and NASA via High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center that provided access to the Pleiades supercomputer, as well as NSF through an XSEDE computational time allocation TG-AST100040 on NICS Kraken, Nautilus, TACC Stampede, Maverick, and Ranch. We used Enthought Canopy Python distribution to generate some of the figures for this work.


  1. Allen, S.W., Dunn, R.J.H., Fabian, A.C., Taylor, G.B., Reynolds, C.S.: MNRAS 372, 21 (2006)ADSGoogle Scholar
  2. Balbus, S.A., Hawley, J.F.: ApJ 376, 214 (1991)ADSGoogle Scholar
  3. Bardeen, J.M.: Nature 226, 64 (1970)ADSGoogle Scholar
  4. Barkov, M.V., Baushev, A.N.: New Astron. 16, 46 (2011)ADSGoogle Scholar
  5. Beckwith, K., Hawley, J.F., Krolik, J.H.: ApJ 678, 1180 (2008)ADSGoogle Scholar
  6. Begelman, M.C.: Accretion disks in active galactic nuclei. In: Miller, J.S. (ed.) Astrophysics of Active Galaxies and Quasi-Stellar Objects, pp. 411–452. University Science Books, Mill Valley (1985)Google Scholar
  7. Begelman, M.C., Armitage, P.J.: ApJ 782, L18 (2014)ADSGoogle Scholar
  8. Berger, E., Zauderer, A., Pooley, G.G., et al.: ApJ 748, 36 (2012)ADSGoogle Scholar
  9. Bisnovatyi-Kogan, G.S., Ruzmaikin, A.A.: Ap&SS 28, 45 (1974)ADSGoogle Scholar
  10. Bisnovatyi-Kogan, G.S., Ruzmaikin, A.A.: Ap&SS 42, 401 (1976)ADSGoogle Scholar
  11. Blandford, R.D.: Beyond the fringe. In: Romney, J., Reid, M. (eds.) Future Directions in High Resolution Astronomy. Astronomical Society of the Pacific Conference Series, vol. 340, p. 3. Astronomical Society of the Pacific, San Francisco (2005)Google Scholar
  12. Blandford, R.D., Payne, D.G.: MNRAS 199, 883 (1982)ADSzbMATHGoogle Scholar
  13. Blandford, R.D., Znajek, R.L.: MNRAS 179, 433 (1977)ADSGoogle Scholar
  14. Bloom, J.S., et al.: Science 333, 203 (2011)ADSGoogle Scholar
  15. Burrows, D.N., et al.: Nature 476, 421 (2011)ADSGoogle Scholar
  16. Cenko, S.B., et al.: ApJ 753, 77 (2012)ADSGoogle Scholar
  17. Chakrabarti, S.K.: ApJ 288, 1 (1985)ADSGoogle Scholar
  18. Chiueh, T., Li, Z.Y., Begelman, M.C.: ApJ 377, 462 (1991)ADSGoogle Scholar
  19. Cowperthwaite, P.S., Reynolds, C.S.: ApJ 752, L21 (2012)ADSGoogle Scholar
  20. Davis, S.W., Narayan, R., Zhu, Y., Barret, D., Farrell, S.A., Godet, O., Servillat, M., Webb, N.A., ApJ 734, 111 (2011)ADSGoogle Scholar
  21. De Villiers, J.P., Hawley, J.F.: ApJ 589, 458 (2003)ADSGoogle Scholar
  22. De Villiers, J.P., Hawley, J.F., Krolik, J.H.: ApJ 599, 1238 (2003)ADSGoogle Scholar
  23. De Villiers, J.P., Hawley, J.F., Krolik, J.H., Hirose, S.: ApJ 620, 878 (2005)ADSGoogle Scholar
  24. Dexter, J., McKinney, J.C., Markoff, S., Tchekhovskoy, A.: MNRAS 440, 2185 (2014)ADSGoogle Scholar
  25. Eatough, R.P., Falcke, H., Karuppusamy, R., Lee, K.J., Champion, D.J., Keane, E.F., Desvignes, G., Schnitzeler, D.H.F.M., Spitler, L.G., Kramer, M., Klein, B., Bassa, C., Bower, G.C., Brunthaler, A., Cognard, I., Deller, A.T., Demorest, P.B., Freire, P.C.C., Kraus, A., Lyne, A.G., Noutsos, A., Stappers, B., Wex, N.: Nature 501, 391 (2013)ADSGoogle Scholar
  26. Esin, A.A., McClintock, J.E., Narayan, R.: ApJ 489, 865 (1997)ADSGoogle Scholar
  27. Esin, A.A., Narayan, R., Cui, W., Grove, J.E., Zhang, S.N.: ApJ 505, 854 (1998)ADSGoogle Scholar
  28. Fabian, A., Iwasawa, K., Reynolds, C., Young, A.: Publ. Astron. Soc. Pac. 112(775), 1145 (2000)ADSGoogle Scholar
  29. Fanaroff, B.L., Riley, J.M.: MNRAS 167, 31P (1974)ADSGoogle Scholar
  30. Farrell, S.A., Webb, N.A., Barret, D., Godet, O., Rodrigues, J.M.: Nature 460(7251), 73 (2009)ADSGoogle Scholar
  31. Fender, R.P., Belloni, T.M., Gallo, E.: MNRAS 355, 1105 (2004)ADSGoogle Scholar
  32. Fender, R.P., Gallo, E., Russell, D.: MNRAS 406, 1425. ArXiv:1003.5516 (2010)Google Scholar
  33. Fernandes, C.A.C. et al.: MNRAS 411, 1909 (2011)ADSGoogle Scholar
  34. Fragile, P.C., Blaes, O.M., Anninos, P., Salmonson, J.D.: ApJ 668, 417 (2007)ADSGoogle Scholar
  35. Frank, J., King, A., Raine, D.J.: Accretion Power in Astrophysics, 3rd edn. Cambridge University Press, Cambridge (2002)Google Scholar
  36. Gammie, C.F., Narayan, R., Blandford, R.: ApJ 516, 177 (1999)ADSGoogle Scholar
  37. Gammie, C.F., McKinney, J.C., Tóth, G.: ApJ 589, 444 (2003)ADSGoogle Scholar
  38. Gammie, C.F., Shapiro, S.L., McKinney, J.C.: ApJ 602, 312 (2004)ADSGoogle Scholar
  39. Ghisellini, G., et al.: MNRAS 402, 497 (2010)ADSGoogle Scholar
  40. Ghosh, P., Abramowicz, M.A.: MNRAS 292, 887 (1997)ADSGoogle Scholar
  41. Giannios, D., Metzger, B.D.: MNRAS 416, 2102 (2011)ADSGoogle Scholar
  42. Guilet, J., Ogilvie, G.I.: MNRAS 424, 2097 (2012)ADSGoogle Scholar
  43. Guilet, J., Ogilvie, G.I.: MNRAS 430, 822 (2013)ADSGoogle Scholar
  44. Hawley, J.F., Krolik, J.H.: ApJ 641, 103 (2006)ADSGoogle Scholar
  45. Heinz, S., Sunyaev, R.A.: MNRAS 343, L59 (2003)ADSGoogle Scholar
  46. Hui, Y., Krolik, J.H.: ApJ 679, 1405 (2008)ADSGoogle Scholar
  47. Igumenshchev, I.V.: ApJ 677, 317 (2008)ADSGoogle Scholar
  48. Igumenshchev, I.V.: ApJ 702, L72 (2009)ADSGoogle Scholar
  49. Igumenshchev, I., Narayan, R., Abramowicz, M.: ApJ 592, 1042 (2003)ADSGoogle Scholar
  50. Komissarov, S.S.: MNRAS 326, L41 (2001)ADSGoogle Scholar
  51. Komissarov, S.S., Barkov, M.V.: MNRAS 397, 1153 (2009)ADSGoogle Scholar
  52. Krolik, J.H., Hawley, J.F., Hirose, S.: ApJ 622, 1008 (2005)ADSGoogle Scholar
  53. Kulkarni, A.K., Penna, R.F., Shcherbakov, R.V., Steiner, J.F., Narayan, R., Sä Dowski, A., Zhu, Y., McClintock, J.E., Davis, S.W., McKinney, J.C.: MNRAS 414, 1183 (2011)ADSGoogle Scholar
  54. Livio, M., Ogilvie, G.I., Pringle, J.E.: ApJ 512, 100 (1999). doi:10.1086/306777ADSGoogle Scholar
  55. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: MNRAS 267, 235 (1994)ADSGoogle Scholar
  56. Maccarone, T.J.: A&A 409, 697 (2003)ADSGoogle Scholar
  57. MacFadyen, A.I., Woosley, S.E.: ApJ 524, 262 (1999)ADSGoogle Scholar
  58. Martínez-Sansigre, A., Rawlings, S.: MNRAS 414, 1937 (2011)ADSGoogle Scholar
  59. McClintock, J.E., Narayan, R., Davis, S.W., Gou, L., Kulkarni, A., Orosz, J.A., Penna, R.F., Remillard, R.A., Steiner, J.F.: Class. Quantum Gravity 28(11), 114009 (2011)ADSMathSciNetGoogle Scholar
  60. McClintock, J.E., Narayan, R., Steiner, J.F.: Space Sci. Rev., 183, 295–322 (2013)ADSGoogle Scholar
  61. McKinney, J.C.: ApJ 630, L5 (2005)ADSGoogle Scholar
  62. McKinney, J.C., Blandford, R.D.: MNRAS 394, L126 (2009)ADSGoogle Scholar
  63. McKinney, J.C., Gammie, C.F.: ApJ 611, 977 (2004)ADSGoogle Scholar
  64. McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: MNRAS 423, 3083 (2012)ADSGoogle Scholar
  65. McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: Science 339, 49 (2013)ADSGoogle Scholar
  66. McKinney, J.C., Tchekhovskoy, A., Sadowski, A., Narayan, R.: MNRAS 441, 3177 (2014)ADSGoogle Scholar
  67. McNamara, B.R., Kazemzadeh, F., Rafferty, D.A., Bîrzan, L., Nulsen, P.E.J., Kirkpatrick, C.C., Wise, M.W.: ApJ 698, 594 (2009)ADSGoogle Scholar
  68. McNamara, B.R., Rohanizadegan, M., Nulsen, P.E.J.: ApJ 727, 39 (2011)ADSGoogle Scholar
  69. Metzger, B.D., Giannios, D., Mimica, P.: MNRAS 420, 3528 (2012)ADSGoogle Scholar
  70. Narayan, R., McClintock, J.E.: MNRAS 419, L69 (2012)ADSGoogle Scholar
  71. Narayan, R., Igumenshchev, I.V., Abramowicz, M.A.: PASJ 55, L69 (2003)ADSGoogle Scholar
  72. Narayan, R., Sa̧dowski, A., Penna, R.F., Kulkarni, A.K.: MNRAS 426, 3241 (2012)Google Scholar
  73. Nemmen, R.S., Tchekhovskoy, A.: MNRAS (2014, submitted). ArXiv:1406.7420
  74. Novikov, I.D., Thorne, K.S.: Astrophysics of black holes. In: De Witt, C., De Witt, B.S. (eds.) Black Holes-Les Astres Occlus. Gordon & Breach, New York (1973)Google Scholar
  75. Penna, R.F., et al.: MNRAS 408, 752 (2010)ADSGoogle Scholar
  76. Popham, R., Woosley, S.E., Fryer, C.: ApJ 518, 356 (1999)ADSGoogle Scholar
  77. Potter, W.J., Balbus, S.A.: MNRAS 441, 681 (2014)ADSGoogle Scholar
  78. Proga, D., Begelman, M.C.: ApJ 592, 767 (2003)ADSGoogle Scholar
  79. Punsly, B.: ApJ 728, L17 (2011)ADSGoogle Scholar
  80. Rawlings, S., Saunders, R.: Nature 349, 138 (1991)ADSGoogle Scholar
  81. Rees, M.J.: Nature 333, 523 (1988)ADSGoogle Scholar
  82. Remillard, R.A., McClintock, J.E.: ARA&A 44, 49 (2006)ADSGoogle Scholar
  83. Reynolds, C.S.: Space Sci. Rev., 183, 277–294 (2013a)ADSGoogle Scholar
  84. Reynolds, C.S.: Class. Quantum Gravity 30(24), 244004 (2013b)ADSGoogle Scholar
  85. Rothstein, D.M., Lovelace, R.V.E.: ApJ 677, 1221 (2008)ADSGoogle Scholar
  86. Russell, D.M., Miller-Jones, J.C.A., Maccarone, T.J., Yang, Y.J., Fender, R.P., Lewis, F.: ApJ 739, L19 (2011)ADSGoogle Scholar
  87. Russell, D.M., Gallo, E., Fender, R.P.: MNRAS 431, 405 (2013)ADSGoogle Scholar
  88. Sa̧dowski, A., Narayan, R., Penna, R., Zhu, Y.: MNRAS 436, 3856 (2013)Google Scholar
  89. Sa̧dowski, A., Narayan, R., McKinney, J.C., Tchekhovskoy, A.: MNRAS 439, 503 (2014)Google Scholar
  90. Shafee, R., McKinney, J.C., Narayan, R., Tchekhovskoy, A., et al.: ApJ 687, L25 (2008)ADSGoogle Scholar
  91. Shakura, N.I., Sunyaev, R.A.: A&A 24, 337 (1973)ADSGoogle Scholar
  92. Shapiro, S.L., Teukolsky, S.A. (eds.): Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, pp. 672. Wiley-VCH, Weinheim (1986). ISBN:0-471-87316-0Google Scholar
  93. Sikora, M., Stawarz, Ł., Lasota, J.P.: ApJ 658, 815 (2007)ADSGoogle Scholar
  94. Steiner, J.F., McClintock, J.E., Narayan, R.: ApJ 762, 104 (2013)ADSGoogle Scholar
  95. Stone, N., Loeb, A.: PRL 108(6), 061302 (2012)ADSGoogle Scholar
  96. Straub, O., Godet, O., Webb, N., Servillat, M., Barret, D.: ArXiv e-prints (2014)Google Scholar
  97. Tanabe, K., Nagataki, S.: Phys. Rev. D 78(2), 024004 (2008)ADSGoogle Scholar
  98. Tavecchio, F., Becerra-Gonzalez, J., Ghisellini, G., Stamerra, A., Bonnoli, G., Foschini, L., Maraschi, L.: A&A 534, A86 (2011)ADSGoogle Scholar
  99. Tchekhovskoy, A., Giannios, D.: MNRAS (2014, submitted). ArXiv:1409.4414Google Scholar
  100. Tchekhovskoy, A., McKinney, J.C.: MNRAS 423, L55 (2012)ADSGoogle Scholar
  101. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: MNRAS 379, 469 (2007)ADSGoogle Scholar
  102. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: MNRAS 388, 551 (2008)ADSGoogle Scholar
  103. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: ApJ 699, 1789 (2009)ADSGoogle Scholar
  104. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: ApJ 711, 50 (2010)ADSGoogle Scholar
  105. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: New Astron. 15, 749 (2010)ADSGoogle Scholar
  106. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: MNRAS 418, L79 (2011)ADSGoogle Scholar
  107. Tchekhovskoy, A., McKinney, J.C., Narayan, R.: J. Phys. Conf. Ser. 372(1), 012040 (2012)ADSGoogle Scholar
  108. Tchekhovskoy, A., Metzger, B.D., Giannios, D., Kelley, L.Z.: MNRAS 437, 2744 (2014)ADSGoogle Scholar
  109. Thorne, K.S.: ApJ 191, 507 (1974)ADSGoogle Scholar
  110. Ulmer, A.: ApJ 514, 180 (1999)ADSGoogle Scholar
  111. Urry, C.M., Padovani, P.: PASP 107, 803 (1995)ADSGoogle Scholar
  112. van Velzen, S., Falcke, H.: A&A 557, L7 (2013)ADSGoogle Scholar
  113. Webb, N., Cseh, D., Lenc, E., Godet, O., Barret, D., Corbel, S., Farrell, S., Fender, R., Gehrels, N., Heywood, I.: Science 337, 554 (2012)ADSGoogle Scholar
  114. Wiersema, K., van der Horst, A.J., Levan, A.J., et al.: MNRAS 421, 1942 (2012)ADSGoogle Scholar
  115. Woosley, S.E.: ApJ 405, 273 (1993)ADSGoogle Scholar
  116. Yuan, F., Narayan, R.: ARA&A, 52, 529. ArXiv e-prints (2014)Google Scholar
  117. Yuan, F., Quataert, E., Narayan, R.: ApJ 598, 301 (2003)ADSGoogle Scholar
  118. Zamaninasab, M., Clausen-Brown, E., Savolainen, T., Tchekhovskoy, A.: Nature 510(7503), 126 (2014)ADSGoogle Scholar
  119. Zauderer, B.A., Berger, E., Soderberg, A.M., et al.: Nature 476, 425 (2011)ADSGoogle Scholar
  120. Zauderer, B.A., Berger, E., Margutti, R., Others.: ApJ 767, 152 (2013)Google Scholar
  121. Zhu, Y., Davis, S.W., Narayan, R., Kulkarni, A.K., Penna, R.F., McClintock J.E.: MNRAS 424, 2504 (2012)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations