Relativistic Jets in Stellar Systems

  • Elena GalloEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 414)


Albeit their nature remains elusive, relativistic, collimated outflows of energy and particles appear to be a nearly ubiquitous feature of accreting black holes. As evidence accumulates for a dominant role of the jet in dissipating the liberated accretion power, questions around their powering mechanism and even composition remain unanswered. In this chapter, I will describe the main observational properties of relativistic jets from black hole X-ray binaries, with a particular emphasis on recent developments around three main topics: (i) the role and relative importance of the accretion flow, relativistic jet and equatorial wind; (ii) the existence of global luminosity-luminosity correlation(s) in quiescent and hard state black hole X-ray binaries, and their interpretation(s); (iii) (ways of estimating) the total jet power, and its relation to black hole spin.


Black Hole Accretion Disk Radio Galaxy Hard State Radio Luminosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to thank all her long-term collaborators in this field, and in particular: Dave Russell, James Miller-Jones, Rob Fender, Sera Markoff, Peter Jonker, Jeroen Homan, Stephane Corbel and Rich Plotkin.


  1. Begelman, M.C., Armitage, P.J.: A mechanism for hysteresis in black hole binary state transitions. ApJ 782, 18 (2014). doi:10.1088/2041-8205/782/2/L18ADSCrossRefGoogle Scholar
  2. Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199, 883–903 (1982)ADSCrossRefzbMATHGoogle Scholar
  3. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. MNRAS 179, 433–456 (1977)ADSCrossRefGoogle Scholar
  4. Brocksopp, C., Jonker, P.G., Maitra, D., Krimm, H.A., Pooley, G.G., Ramsay, G., Zurita, C.: Disentangling jet and disc emission from the 2005 outburst of XTE J1118+480. MNRAS 404, 908–916 (2010). doi:10.1111/j.1365-2966.2010.16323.xADSCrossRefGoogle Scholar
  5. Casella, P., Belloni, T., Stella, L.: The ABC of low-frequency quasi-periodic oscillations in black hole candidates: analogies with Z sources. ApJ 629, 403–407 (2005). doi:10.1086/431174ADSCrossRefGoogle Scholar
  6. Casella, P., Maccarone, T.J., O’Brien, K., Fender, R.P., Russell, D.M., van der Klis, M., Pe’Er, A., Maitra, D., Altamirano, D., Belloni, T., Kanbach, G., Klein-Wolt, M., Mason, E., Soleri, P., Stefanescu, A., Wiersema, K., Wijnands, R.: Fast infrared variability from a relativistic jet in GX 339-4. MNRAS 404, 21–25 (2010). doi:10.1111/j.1745-3933.2010.00826.xADSCrossRefGoogle Scholar
  7. Chaty, S., Haswell, C.A., Malzac, J., Hynes, R.I., Shrader, C.R., Cui, W.: Multiwavelength observations revealing the evolution of the outburst of the black hole XTE J1118+480. MNRAS 346, 689–703 (2003). doi:10.1111/j.1365-2966.2003.07115.xADSCrossRefGoogle Scholar
  8. Corbel, S., Nowak, M.A., Fender, R.P., Tzioumis, A.K., Markoff, S.: Radio/X-ray correlation in the low/hard state of GX 339-4. A&A 400, 1007–1012 (2003). doi:10.1051/0004-6361:20030090ADSCrossRefGoogle Scholar
  9. Corbel, S., Körding, E., Kaaret, P.: Revisiting the radio/X-ray flux correlation in the black hole V404 Cyg: from outburst to quiescence. MNRAS 389, 1697–1702 (2008). doi:10.1111/j.1365-2966.2008.13542.xADSCrossRefGoogle Scholar
  10. Corbel, S., Coriat, M., Brocksopp, C., Tzioumis, A.K., Fender, R.P., Tomsick, J.A., Buxton, M.M., Bailyn, C.D.: The ‘universal’ radio/X-ray flux correlation: the case study of the black hole GX 339-4. MNRAS 428, 2500–2515 (2013). doi:10.1093/mnras/sts215ADSCrossRefGoogle Scholar
  11. Coriat, M., Corbel, S., Prat, L., Miller-Jones, J.C.A., Cseh, D., Tzioumis, A.K., Brocksopp, C., Rodriguez, J., Fender, R.P., Sivakoff, G.R.: Radiatively efficient accreting black holes in the hard state: the case study of H1743-322. MNRAS 414, 677–690 (2011). doi:10.1111/j.1365-2966.2011.18433.xADSCrossRefGoogle Scholar
  12. Dhawan, V., Mirabel, I.F., Rodríguez, L.F.: AU-scale synchrotron jets and superluminal ejecta in GRS 1915+105. ApJ 543, 373–385 (2000). doi:10.1086/317088ADSCrossRefGoogle Scholar
  13. Dunn, R.J.H., Fender, R.P., Körding, E.G., Belloni, T., Cabanac, C.: A global spectral study of black hole X-ray binaries. MNRAS 403, 61–82 (2010). doi:10.1111/j.1365-2966.2010.16114.xADSCrossRefGoogle Scholar
  14. Falcke, H., Körding, E., Markoff, S.: A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. A&A 414, 895–903 (2004). doi:10.1051/0004-6361:20031683Google Scholar
  15. Fender, R.P.: Powerful jets from black hole X-ray binaries in low/hard X-ray states. MNRAS 322, 31–42 (2001). doi:10.1046/j.1365-8711.2001.04080.xADSCrossRefGoogle Scholar
  16. Fender, R.: Jets from X-Ray Binaries, 1st edn., pp. 381–419. Cambridge Astrophysics Series, No. 39. Cambridge, UK: Cambridge University Press (2006)Google Scholar
  17. Fender, R., Corbel, S., Tzioumis, T., McIntyre, V., Campbell-Wilson, D., Nowak, M., Sood, R., Hunstead, R., Harmon, A., Durouchoux, P., Heindl, W.: Quenching of the radio jet during the X-ray high state of GX 339-4. ApJ 519, 165–168 (1999). doi:10.1086/312128ADSCrossRefGoogle Scholar
  18. Fender, R.P., Gallo, E., Russell, D.: No evidence for black hole spin powering of jets in X-ray binaries. MNRAS 406, 1425–1434 (2010). doi:10.1111/j.1365-2966.2010.16754.xADSGoogle Scholar
  19. Fender, R.P., Maccarone, T.J., Heywood, I.: The closest black holes. MNRAS 781 (2013). doi:10.1093/mnras/sts688Google Scholar
  20. Fender, R., Gallo, E.: Space science reviews (2014). doi:10.1007/s11214-014-0069-z, (arXiv:1407.3674)Google Scholar
  21. Gallo, E., Fender, R.P., Pooley, G.G.: A universal radio-X-ray correlation in low/hard state black hole binaries. MNRAS 344, 60–72 (2003). doi:10.1046/j.1365-8711.2003.06791.xADSCrossRefGoogle Scholar
  22. Gallo, E., Fender, R.P., Hynes, R.I.: The radio spectrum of a quiescent stellar mass black hole. MNRAS 356, 1017–1021 (2005). doi:10.1111/j.1365-2966.2004.08503.xADSCrossRefGoogle Scholar
  23. Gallo, E., Fender, R.P., Miller-Jones, J.C.A., Merloni, A., Jonker, P.G., Heinz, S., Maccarone, T.J., van der Klis, M.: A radio-emitting outflow in the quiescent state of A0620-00: implications for modelling low-luminosity black hole binaries. MNRAS 370, 1351–1360 (2006). doi:10.1111/j.1365-2966.2006.10560.xADSCrossRefGoogle Scholar
  24. Gallo, E., Migliari, S., Markoff, S., Tomsick, J.A., Bailyn, C.D., Berta, S., Fender, R., Miller-Jones, J.C.A.: The spectral energy distribution of quiescent black hole X-ray binaries: new constraints from spitzer. ApJ 670, 600–609 (2007). doi:10.1086/521524ADSCrossRefGoogle Scholar
  25. Gallo, E., Miller, B.P., Fender, R.: Assessing luminosity correlations via cluster analysis: evidence for dual tracks in the radio/X-ray domain of black hole X-ray binaries. MNRAS 423, 590–599 (2012). doi:10.1111/j.1365-2966.2012.20899.xADSCrossRefGoogle Scholar
  26. Gallo, E. et al.: MNRAS 445, 290 (2014)ADSCrossRefGoogle Scholar
  27. Gültekin, K., Cackett, E.M., King, A.L., Miller, J.M., Pinkney, J.: Low-mass AGNs and their relation to the fundamental plane of black hole accretion. ApJ 788, 22 (2014). doi:10.1088/2041-8205/788/2/L22CrossRefGoogle Scholar
  28. Heinz, S.: Radio lobe dynamics and the environment of microquasars. A&A 388, 40–43 (2002). doi:10.1051/0004-6361:20020402ADSCrossRefGoogle Scholar
  29. Heinz, S., Sunyaev, R.A.: The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets. MNRAS 343, 59–64 (2003). doi:10.1046/j.1365-8711.2003.06918.xADSCrossRefGoogle Scholar
  30. Hynes, R.I., Charles, P.A., Garcia, M.R., Robinson, E.L., Casares, J., Haswell, C.A., Kong, A.K.H., Rupen, M., Fender, R.P., Wagner, R.M., Gallo, E., Eves, B.A.C., Shahbaz, T., Zurita, C.: Correlated X-ray and optical variability in V404 Cygni in quiescence. ApJ 611, 125–128 (2004). doi:10.1086/424005ADSCrossRefGoogle Scholar
  31. Hynes, R.I., Robinson, E.L., Pearson, K.J., Gelino, D.M., Cui, W., Xue, Y.Q., Wood, M.A., Watson, T.K., Winget, D.E., Silver, I.M.: Further evidence for variable synchrotron emission in XTE J1118+480 in outburst. ApJ 651, 401–407 (2006). doi:10.1086/507669ADSCrossRefGoogle Scholar
  32. Hynes, R.I., Bradley, C.K., Rupen, M., Gallo, E., Fender, R.P., Casares, J., Zurita, C.: The quiescent spectral energy distribution of V404 Cyg. MNRAS 399, 2239–2248 (2009). doi:10.1111/j.1365-2966.2009.15419.xADSCrossRefGoogle Scholar
  33. Jonker, P.G., Miller-Jones, J., Homan, J., Gallo, E., Rupen, M., Tomsick, J., Fender, R.P., Kaaret, P., Steeghs, D.T.H., Torres, M.A.P., Wijnands, R., Markoff, S., Lewin, W.H.G.: Following the 2008 outburst decay of the black hole candidate H 1743-322in X-ray and radio. MNRAS 401, 1255–1263 (2010). doi:10.1111/j.1365-2966.2009.15717.xADSCrossRefGoogle Scholar
  34. King, A.L., Miller, J.M., Reynolds, M.T., Gültekin, K., Gallo, E., Maitra, D.: A distinctive disk-jet coupling in the lowest-mass Seyfert, NGC 4395. ApJ 774, 25 (2013). doi:10.1088/2041-8205/774/2/L25ADSCrossRefGoogle Scholar
  35. Lasota, J.-P.: The disc instability model of dwarf novae and low-mass X-ray binary transients. New Astron. Rev. 45, 449–508 (2001). doi:10.1016/S1387-6473(01)00112-9ADSCrossRefGoogle Scholar
  36. Liu, B.F., Meyer, F., Meyer-Hofmeister, E.: An inner disk below the ADAF: the intermediate spectral state of black hole accretion. A&A 454, 9–12 (2006). doi:10.1051/0004-6361:20065430ADSCrossRefGoogle Scholar
  37. Liu, B.F., Taam, R.E., Meyer-Hofmeister, E., Meyer, F.: The existence of inner cool disks in the low/hard state of accreting black holes. ApJ 671, 695–705 (2007). doi:10.1086/522619ADSCrossRefGoogle Scholar
  38. Malzac, J., Merloni, A., Fabian, A.C.: Jet-disc coupling through a common energy reservoir in the black hole XTE J1118+480. MNRAS 351, 253–264 (2004). doi:10.1111/j.1365-2966.2004.07772.xADSCrossRefGoogle Scholar
  39. Markoff, S., Falcke, H., Fender, R.: A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the low/hard spectral state. A&A 372, 25–28 (2001). doi:10.1051/0004-6361:20010420Google Scholar
  40. Markoff, S., Nowak, M., Corbel, S., Fender, R., Falcke, H.: Exploring the role of jets in the radio/X-ray correlations of GX 339-4. A&A 397, 645–658 (2003). doi:10.1051/0004-6361:20021497ADSCrossRefGoogle Scholar
  41. Markoff, S., Nowak, M.A., Wilms, J.: Going with the flow: can the base of jets subsume the role of compact accretion disk coronae? ApJ 635, 1203–1216 (2005). doi:10.1086/497628ADSCrossRefGoogle Scholar
  42. Markoff, S., Nowak, M., Young, A., Marshall, H.L., Canizares, C.R., Peck, A., Krips, M., Petitpas, G., Schödel, R., Bower, G.C., Chandra, P., Ray, A., Muno, M., Gallagher, S., Hornstein, S., Cheung, C.C.: Results from an extensive simultaneous broadband campaign on the underluminous active nucleus M81*: further evidence for mass-scaling accretion in black holes. ApJ 681, 905–924 (2008). doi:10.1086/588718ADSCrossRefGoogle Scholar
  43. McClintock, J.E., Narayan, R., Steiner, J.F.: Black hole spin via continuum fitting and the role of spin in powering transient jets. Space Sci. Rev. (2013). doi:10.1007/s11214-013-0003-9Google Scholar
  44. Merloni, A., Heinz, S., di Matteo, T.: A fundamental plane of black hole activity. MNRAS 345, 1057–1076 (2003). doi:10.1046/j.1365-2966.2003.07017.xADSCrossRefGoogle Scholar
  45. Meyer, F., Liu, B.F., Meyer-Hofmeister, E.: Re-condensation from an ADAF into an inner disk: the intermediate state of black hole accretion? A&A 463, 1–9 (2007). doi:10.1051/0004-6361:20066203ADSCrossRefGoogle Scholar
  46. Meyer-Hofmeister, E., Meyer, F.: The relation between radio and X-ray luminosity of black hole binaries: affected by inner cool disks? A&A 562, 142 (2014). doi:10.1051/0004-6361/201322423ADSCrossRefGoogle Scholar
  47. Mïller, J.M., Gültekin, K.: X-ray and radio constraints on the mass of the black hole in swift J164449.3+573451. ApJ 738, 13 (2011). doi:10.1088/2041-8205/738/1/L13Google Scholar
  48. Miller, J.M., Raymond, J., Homan, J., Fabian, A.C., Steeghs, D., Wijnands, R., Rupen, M., Charles, P., van der Klis, M., Lewin, W.H.G.: Simultaneous Chandra and RXTE spectroscopy of the microquasar H1743-322: clues to disk wind and jet formation from a variable ionized outflow. ApJ 646, 394–406 (2006). doi:10.1086/504673ADSCrossRefGoogle Scholar
  49. Miller, J.M., Reynolds, C.S., Fabian, A.C., Cackett, E.M., Miniutti, G., Raymond, J., Steeghs, D., Reis, R., Homan, J.: Initial measurements of black hole spin in GX 339-4 from Suzaku spectroscopy. ApJ 679, 113–116 (2008). doi:10.1086/589446ADSCrossRefGoogle Scholar
  50. Miller, J.M., Raymond, J., Fabian, A.C., Reynolds, C.S., King, A.L., Kallman, T.R., Cackett, E.M., van der Klis, M., Steeghs, D.T.H.: The disk-wind-jet connection in the black hole H 1743-322. ApJ 759, 6 (2012). doi:10.1088/2041-8205/759/1/L6ADSCrossRefGoogle Scholar
  51. Miller-Jones, J.C.A., Sivakoff, G.R., Altamirano, D., Coriat, M., Corbel, S., Dhawan, V., Krimm, H.A., Remillard, R.A., Rupen, M.P., Russell, D.M., Fender, R.P., Heinz, S., Körding, E.G., Maitra, D., Markoff, S., Migliari, S., Sarazin, C.L., Tudose, V.: Disc-jet coupling in the 2009 outburst of the black hole candidate H1743-322. MNRAS 421, 468–485 (2012). doi: 10.1111/j.1365-2966.2011.20326.x ADSGoogle Scholar
  52. Mirabel, I.F., Rodríguez, L.F.: Sources of relativistic jets in the galaxy. Ann. Rev. A&A 37, 409–443 (1999). doi:10.1146/annurev.astro.37.1.409ADSCrossRefGoogle Scholar
  53. Narayan, R., McClintock, J.E.: Observational evidence for a correlation between jet power and black hole spin. MNRAS 419, 69–73 (2012). doi:10.1111/j.1745-3933.2011.01181.xADSCrossRefGoogle Scholar
  54. Neilsen, J., Lee, J.C.: Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 458, 481–484 (2009). doi:10.1038/nature07680ADSCrossRefGoogle Scholar
  55. Pe’er, A., Markoff, S.: X-ray emission from transient jet model in black hole binaries. ApJ 753, 177 (2012). doi:10.1088/0004-637X/753/2/177ADSCrossRefGoogle Scholar
  56. Plant, D.S., Fender, R.P., Ponti, G., Muñoz-Darias, T., Coriat, M.: Revealing accretion on to black holes: X-ray reflection throughout three outbursts of GX 339-4. MNRAS 442, 1767–1785 (2014). doi:10.1093/mnras/stu867ADSCrossRefGoogle Scholar
  57. Plotkin, R.M., Gallo, E., Jonker, P.G.: The X-ray spectral evolution of galactic black hole X-ray binaries toward quiescence. ApJ 773, 59 (2013). doi:10.1088/0004-637X/773/1/59ADSCrossRefGoogle Scholar
  58. Plotkin, R.M. et al.: MNRAS (2014, submitted)Google Scholar
  59. Ponti, G., Fender, R.P., Begelman, M.C., Dunn, R.J.H., Neilsen, J., Coriat, M.: Ubiquitous equatorial accretion disc winds in black hole soft states. MNRAS 422, 11 (2012). doi:10.1111/j.1745-3933.2012.01224.xADSCrossRefGoogle Scholar
  60. Reis, R.C., Fabian, A.C., Miller, J.M.: Black hole accretion discs in the canonical low-hard state. MNRAS 402, 836–854 (2010). doi:10.1111/j.1365-2966.2009.15976.xADSCrossRefGoogle Scholar
  61. Remillard, R.A., McClintock, J.E.: X-ray properties of black-hole binaries. Ann. Rev. A&A 44, 49–92 (2006). doi:10.1146/annurev.astro.44.051905.092532ADSCrossRefGoogle Scholar
  62. Reynolds, C.S.: Measuring black hole spin using X-ray reflection spectroscopy. Space Sci. Rev. (2013). doi:10.1007/s11214-013-0006-6Google Scholar
  63. Reynolds, M.T., Reis, R.C., Miller, J.M., Cackett, E.M., Degenaar, N.: The quiescent X-ray spectrum of accreting black holes. MNRAS 441, 3656–3665 (2014). doi:10.1093/mnras/stu832ADSCrossRefGoogle Scholar
  64. Russell, D.M., Fender, R.P., Hynes, R.I., Brocksopp, C., Homan, J., Jonker, P.G., Buxton, M.M.: Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions. MNRAS 371, 1334–1350 (2006). doi:10.1111/j.1365-2966.2006.10756.xADSCrossRefGoogle Scholar
  65. Russell, D.M., Maitra, D., Dunn, R.J.H., Markoff, S.: Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550-564. MNRAS 405, 1759–1769 (2010). doi:10.1111/j.1365-2966.2010.16547.xADSGoogle Scholar
  66. Russell, D.M., Miller-Jones, J.C.A., Maccarone, T.J., Yang, Y.J., Fender, R.P., Lewis, F.: Testing the jet quenching paradigm with an ultradeep observation of a steadily soft state black hole. ApJ 739, 19 (2011). doi:10.1088/2041-8205/739/1/L19ADSCrossRefGoogle Scholar
  67. Russell, D.M., Gallo, E., Fender, R.P.: Observational constraints on the powering mechanism of transient relativistic jets. MNRAS 431, 405–414 (2013a). doi:10.1093/mnras/stt176ADSCrossRefGoogle Scholar
  68. Russell, D.M., Markoff, S., Casella, P., Cantrell, A.G., Chatterjee, R., Fender, R.P., Gallo, E., Gandhi, P., Homan, J., Maitra, D., Miller-Jones, J.C.A., O’Brien, K., Shahbaz, T.: Jet spectral breaks in black hole X-ray binaries. MNRAS 429, 815–832 (2013b). doi:10.1093/mnras/sts377ADSCrossRefGoogle Scholar
  69. Russell, T.D., Soria, R., Miller-Jones, J.C.A., Curran, P.A., Markoff, S., Russell, D.M., Sivakoff, G.R.: The accretion-ejection coupling in the black hole candidate X-ray binary MAXI J1836-194. MNRAS 439, 1390–1402 (2014). doi:10.1093/mnras/stt2498ADSCrossRefGoogle Scholar
  70. Sikora, M., Stawarz, Ł., Lasota, J.-P.: Radio loudness of active galactic nuclei: observational facts and theoretical implications. ApJ 658, 815–828 (2007). doi:10.1086/511972ADSCrossRefGoogle Scholar
  71. Soleri, P., Fender, R.: On the nature of the ‘radio-quiet’ black hole binaries. MNRAS 413, 2269–2280 (2011). doi:10.1111/j.1365-2966.2011.18303.xADSCrossRefGoogle Scholar
  72. Steiner, J.F., McClintock, J.E., Narayan, R.: Jet power and black hole spin: testing an empirical relationship and using it to predict the spins of six black holes. ApJ 762, 104 (2013). doi:10.1088/0004-637X/762/2/104ADSCrossRefGoogle Scholar
  73. Stirling, A.M., Spencer, R.E., de la Force, C.J., Garrett, M.A., Fender, R.P., Ogley, R.N.: A relativistic jet from Cygnus X-1 in the low/hard X-ray state. MNRAS 327, 1273–1278 (2001). doi:10.1046/j.1365-8711.2001.04821.xADSCrossRefGoogle Scholar
  74. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS 418, 79–83 (2011). doi:10.1111/j.1745-3933.2011.01147.xADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of MichiganAnn ArborUSA

Personalised recommendations