Abstract

The paper discusses phone as a sensor model. For many applied tasks smart phones are an ideal platform for collecting and processing context-related data. The most popular example is, probably, computational social science. Phones can collect data for conducting various social researches about people’s social behavior. This paper presents an attempt to describe and categorize existing open source libraries for mobile sensing, describe architecture and design patterns as well as discover directions for the future development.

Keywords

Smartphone sensing open source data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lazer, D., et al.: Life in the network: The coming age of computational social science. Science 323(5915), 721 (2009)CrossRefGoogle Scholar
  2. 2.
    Hekler, E., Klasnja, P., Froehlich, J., Buman, M.: Mind the Theoretical Gap: Interpreting, Using, and Developing Behavioral Theory in HCI Research. In: ACM CHI, Paris, France (2013)Google Scholar
  3. 3.
    Lathia, N., Pejovic, V., Rachuri, K., Mascolo, C., Musolesi, M., Rentfrow, P.: Smartphones for Large-Scale Behaviour Change Interventions. IEEE Pervasive Computing (May 2013)Google Scholar
  4. 4.
    Aggarwal, C., Abdelzaher, T.: Integrating sensors and social networks. In: Social Network Data Analytics, ch. 14, Springer (2011)Google Scholar
  5. 5.
    Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems. J. Personal and Ubiquitous Computing (2005)Google Scholar
  6. 6.
    Rachuri, K., Efstatiou, C., Leontiadis, I., Mascolo, C., Rentfrow, P.: METIS: Exploring Mobile Phone Sensing Offloading for Efficiently Supporting Social Sensing Applications. In: IEEE PerCom, San Diego, USA (2013)Google Scholar
  7. 7.
    Priyantha, B., Lymberopoulos, D., Liu, J.: Littlerock: Enabling energy-efficient continuous sensing on mobile phones. IEEE Pervasive Computing 10(2), 12–15 (2011)CrossRefGoogle Scholar
  8. 8.
    Han, Y., Kang, J.M., Seo, S.S., Mehaoua, A., Hong, J.W.K.: An energy efficient user context collection method for smartphones. In: 2013 15th Asia-Pacific on Network Operations and Management Symposium (APNOMS), pp. 1–6. IEEE (September 2013)Google Scholar
  9. 9.
    Nawaz, S., Efstratiou, C., Mascolo, C.: ParkSense: A smartphone based sensing system for on-street parking. In: Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, pp. 75–86. ACM (September 2013)Google Scholar
  10. 10.
    Rao, H., Fu, W.T.: A General Framework for a Collaborative Mobile Indoor Navigation Assistance System. In: Proceedings of the 3rd International Workshop on Location Awareness for Mixed and Dual Reality, pp. 21–24 (March 2013)Google Scholar
  11. 11.
    Botts, M., Robin, A.: OpenGIS Sensor Model Language (SensorML) implementation specication. OpenGIS Implementation Specication OGC 07-000, The Open Geospatical Consortium (July 2007)Google Scholar
  12. 12.
    Robin, A., Botts, M.E.: Creation of Specific SensorML Process Models. Earth System Science Center-NSSTC, University of Alabama in Huntsville (UAH), HUNTSVILLE, AL 35899 (2006)Google Scholar
  13. 13.
    Russomanno, D., Kothari, C., Thomas, O.: Sensor ontologies: From shallow to deep models. In: 37th Southeastern Symposium on System Theory (2005)Google Scholar
  14. 14.
    Compton, M., Neuhaus, H., Taylor, K., Tran, K.N.: Reasoning about Sensors and Compositions. In: SSN, pp. 33–48 (2009)Google Scholar
  15. 15.
    Usländer, T., Berre, A.J., Granell, C., Havlik, D., Lorenzo, J., Sabeur, Z., Modafferi, S.: The future internet enablement of the environment information space. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A.E. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 109–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Namiot, D., Sneps-Sneppe, M.: Proximity as a service. In: 2012 2nd Baltic Congress on Future Internet Communications (BCFIC), pp. 199–205. IEEE (April 2012)Google Scholar
  17. 17.
    Namiot, D., Sneps-Sneppe, M.: Geofence and Network Proximity. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2013 and ruSMART 2013. LNCS, vol. 8121, pp. 117–127. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Estimote API, http://estimote.com/api/ (retrived June 2014)
  19. 19.
  20. 20.
    Usländer, T., Berre, A.J., Granell, C., Havlik, D., Lorenzo, J., Sabeur, Z., Modafferi, S.: The future internet enablement of the environment information space. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A.E. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 109–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Namiot, D.: Context-Aware Browsing – A Practical Approach. Next Generation Mobile Applications. In: 2012 6th International Conference on Services and Technologies (NGMAST), pp. 18–23 (2012), doi:10.1109/NGMAST.2012.13Google Scholar
  22. 22.
    Sneps-Sneppe, M., Namiot, D.: About M2M standards and their possible extensions. In: 2012 2nd Baltic Congress on Future Internet Communications (BCFIC), pp. 187–193. IEEE (April 2012), doi:10.1109/BCFIC.2012.6218001Google Scholar
  23. 23.
    Lane, N.D., et al.: A survey of mobile phone sensing. IEEE Communications Magazine 48(9), 140–150 (2010)CrossRefGoogle Scholar
  24. 24.
    Gupta, N.: Inside Bluetooth Low Energy. Artech House (2013)Google Scholar
  25. 25.
    Dilger, D.E.: Inside iOS 7: iBeacons enhance apps’ location awareness via Bluetooth LE. AppleInsider (2013)Google Scholar
  26. 26.
    Aware Framework, http://www.awareframework.com/home/ (retrieved: June 2014)
  27. 27.
    Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A.: EmotionSense: A mobile phones based adaptive platform for experimental social psychology research. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 281–290. ACM (September 2010)Google Scholar
  28. 28.
    Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fmri: Investigating and shaping social mechanisms in the real world. Pervasive and Mobile Computing (2011)Google Scholar
  29. 29.
    Funf, http://funf.org (retrieved: February 2014)
  30. 30.
    OpenDataKit, http://opendatakit.org/ (retrieved June 2014)
  31. 31.
    Namiot, D., Sneps-Sneppe, M.: Wireless Networks Sensors and Social Streams. In: 2013 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 413–418. IEEE (March 2013)Google Scholar
  32. 32.
    Namiot, D., Sneps-Sneppe, M.: Customized check-in Procedures. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN 2011 and ruSMART 2011. LNCS, vol. 6869, pp. 160–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Namiot, D., Sneps–Sneppe, M.: Social streams based on network proximity. International Journal of Space-Based and Situated Computing 3(4), 234–242 (2013)CrossRefGoogle Scholar
  34. 34.
    Volkov, A.A., Namiot, D.E., Schneps-Schneppe, M.A.: Building an Effective Infrastructure for Environment. International Journal of Open Information Technologies 1(7), 1–10 (2013) (in Russian)Google Scholar
  35. 35.
    Namiot, D.: Geo messages. In: 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 14–19 (2010), doi:10.1109/ICUMT.2010.567666Google Scholar
  36. 36.
    Ra, M.R., Liu, B., La Porta, T.F., Govindan, R.: Medusa: A programming framework for crowd-sensing applications. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 337–350. ACM (June 2012)Google Scholar
  37. 37.
    Fuhrhop, C., Lyle, J., Faily, S.: The webinos project. In: Proceedings of the 21st International Conference Companion on World Wide Web, pp. 259–262. ACM (April 2012)Google Scholar
  38. 38.
    Bjelica, M.Z., Teslic, N.: A concept and implementation of the Embeddable Home Controller. In: 2010 Proceedings of the 33rd International Convention MIPRO, pp. 686–690. IEEE (May 2010)Google Scholar
  39. 39.
    Eugster, P.T., Felber, P.A., Guerraoui, R., Kernmarrec, A.-M.: The many faces of publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)CrossRefGoogle Scholar
  40. 40.
    Guinard, D., Trifa, V.: Towards the web of things: Web mashups for embedded devices. Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM 2009). In: Proceedings of WWW (International World Wide Web Conferences), Madrid, Spain (2009)Google Scholar
  41. 41.
    Michael, C., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  42. 42.
    Shelby, Z.: Embedded web services. IEEE Wireless Communications 17(6), 52–57 (2010)CrossRefGoogle Scholar
  43. 43.
    Heath, T., Bizer, C.: Linked data: Evolving the web into a global data space. Synthesis lectures on the Semantic Web: Theory and Technology 1(1), 1–13 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dmitry Namiot
    • 1
  • Manfred Sneps-Sneppe
    • 2
  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.M2M Competence CenterZNIISMoscowRussia

Personalised recommendations