Redactable Signatures to Control the Maximum Noise for Differential Privacy in the Smart Grid

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8448)

Abstract

The Smart Grid is currently developed and fundamental security requirements like integrity and origin authentication need to be addressed while minimizing arising privacy issues. This paper balances two opposing goals: On the one hand, we mitigate privacy issues raised by overly precise energy consumption values via data perturbation mechanisms, e.g., add noise. On the other hand we limit the noise’s range and keep a verifiable level of integrity of consumption values from the Smart Metering Gateway by using a redactable signature. We propose to use the value obtained by calculating the worst case guarantee of differential privacy as a metric to compare and judge a Smart Grid application’s privacy invasiveness.

Keywords

Smart grid Differential privacy Redactable signature schemes 

References

  1. 1.
    Ács, G., Castelluccia, C.: I Have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Allcott, H.: Social norms and energy conservation. J. Public Econ. 95(9–10), 1082–1095 (2011). (Special Issue: The Role of Firms in Tax Systems)CrossRefGoogle Scholar
  3. 3.
    Backes, M., Meiser, S.: Differentially private smart metering with battery recharging. IACR Cryptology ePrint Archive 2012, 183 (2012)Google Scholar
  4. 4.
    Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  5. 5.
    Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Chang, E.-C., Lim, C.L., Xu, J.: Short redactable signatures using random trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Earle, R., Kahn, E.P., Macan, E.: Measuring the capacity impacts of demand response. Electricity J. 22(6), 47–58 (2009)CrossRefGoogle Scholar
  11. 11.
    Enev, M., Gupta, S., Kohno, T., Patel, S.N.: Televisions, video privacy, and powerline electromagnetic interference. In: ACM CCS, pp. 537–550. ACM (2011)Google Scholar
  12. 12.
    Bundesamt für Sicherheit in der Informationstechnik. BSI TR-03109 @ONLINE (2011)Google Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17, 281–308 (1988)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Greveler, U., Justus, B., Löhr, D.: Identifikation von Videoinhalten über granulare Stromverbrauchsdaten. In: Sicherheit. LNI, vol. 195, pp. 35–45. GI (2012)Google Scholar
  16. 16.
    Haber, S., Hatano, Y., Honda, Y., Horne, W.G., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: ASIACCS, pp. 353–362 (2008)Google Scholar
  17. 17.
    Jawurek, M., Johns, M., Rieck, K.: Smart metering de-pseudonymization. In: ACSAC, pp. 227–236 (2011)Google Scholar
  18. 18.
    Jeske, T.: Privacy-preserving smart metering without a trusted-third-party. In: SECRYPT, pp. 114–123. SciTePress (2011)Google Scholar
  19. 19.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  20. 20.
    Lisovich, M.A., Mulligan, D.K., Wicker, S.B.: Inferring personal information from demand-response systems. IEEE Secur. Priv. 8(1), 11–20 (2010)CrossRefGoogle Scholar
  21. 21.
    Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based on bilinear maps. In: Proceedings of the ASIACCS ’06, pp. 343–354. ACM, New York (2006)Google Scholar
  22. 22.
    Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.: Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans. 88–A(1), 239–246 (2005)CrossRefGoogle Scholar
  23. 23.
    Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: Proceedings of the 2nd ACM BuildSys ’10, pp. 61–66. ACM (2010)Google Scholar
  24. 24.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 26(1), 96–99 (1983)CrossRefGoogle Scholar
  25. 25.
    Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  26. 26.
    Shi, E., Chan, T.-H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS. The Internet Society (2011)Google Scholar
  27. 27.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  28. 28.
    von Oheimb, D.: IT security architecture approaches for smart metering and smart grid. In: Cuellar, J. (ed.) SmartGridSec 2012. LNCS, vol. 7823, pp. 1–25. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Wu, Z.-Y., Hsueh, C.-W., Tsai, C.-Y., Lai, F., Lee, H.-C., Chung, Y.: Redactable signatures for signed CDA documents. J. Med. Syst. 36(3), 1795–1808 (2012)CrossRefGoogle Scholar
  30. 30.
    Ziekow, H., Goebel, C., Strüker, J., Jacobsen, H.-A.: The potential of smart home sensors in forecasting household electricity demand. In: SmartGridComm (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Chair of IT-SecurityUniversity of PassauPassauGermany
  2. 2.Institut für Informatik und GesellschaftUniversität FreiburgFreiburgGermany

Personalised recommendations