Skip to main content

Glycosylation in Cell Culture

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Glycosylation affects many general functional factors of a glycoprotein, such as stability, inhibition of proteolysis, solubility, aggregation, as well as other attributes critical to its use as a biotherapeutic. Therefore our understanding of the glycosylation pathway, factors that affect it, and our ability to manipulate glycosylation are essential in producing superior biotherapeutics. The complex synthetic pathway of N-linked glycosylation occurs in both the endoplasmic reticulum and Golgi and involves a large number of precursors and enzymes, leading to a large array of possible glycan structures. Thus, variability in glycosylation may be influenced by numerous factors that affect this pathway, such as host cell type, nutrient levels and supplements, dissolved oxygen, pH, temperature, and by-product accumulation, and thus must be closely monitored. Better analytical techniques have allowed linking specific glycan structures to functionality of glycoproteins, which have led to efforts to modify glycosylation through genetic engineering, sequence-interfering RNA (siRNA), glycosylation inhibitors or chemoenzymatic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn M-H, Song M, Oh E-Y, Jamal A, Kim H, Ko K, Choo Y-K, Kim B-J, Ko K (2008a) Production of therapeutic proteins with baculovirus expression system in insect cell. Entomol Res 38:S71–S78

    Google Scholar 

  • Ahn WS, Jeon JJ, Jeong YR, Lee SJ, Yoon SK (2008b) Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnol Bioeng 101(6):1234–1244

    CAS  PubMed  Google Scholar 

  • Allen S, Naim HY, Bulleid NJ (1995) Intracellular folding of tissue-type plasminogen activator. Effects of disulfide bond formation on N-linked glycosylation and secretion. J Biol Chem 270(9):4797–4804

    CAS  PubMed  Google Scholar 

  • Andersen DC, Goochee CF (1994) The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins. Curr Opin Biotechnol 5(5):546–549

    CAS  PubMed  Google Scholar 

  • Andersen DC, Goochee CF (1995) The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol Bioeng 47(1):96–105

    CAS  PubMed  Google Scholar 

  • Aranibar N, Reily MD (2014) NMR methods for metabolomics of mammalian cell culture bioreactors. Methods Mol Biol 1104:223–236

    PubMed  Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    CAS  PubMed  Google Scholar 

  • Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202

    CAS  PubMed  Google Scholar 

  • Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4(4):419–425

    PubMed Central  PubMed  Google Scholar 

  • Betting DJ, Mu XY, Kafi K, McDonnel D, Rosas F, Gold DP, Timmerman JM (2009) Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells. Vaccine 27(2):250–259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bork K, Reutter W, Weidemann W, Horstkorte R (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett 581(22):4195–4198

    CAS  PubMed  Google Scholar 

  • Borys MC, Linzer DI, Papoutsakis ET (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology (N Y) 11(6):720–724

    CAS  Google Scholar 

  • Borys MC, Dalal NG, Abu-Absi NR, Khattak SF, Jing Y, Xing Z, Li ZJ (2010) Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng 105(6):1048–1057

    CAS  PubMed  Google Scholar 

  • Butler M (2006) Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by Mammalian cell systems. Cytotechnology 50(1–3):57–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castilho A, Gattinger P, Grass J, Jez J, Pabst M, Altmann F, Gorfer M, Strasser R, Steinkellner H (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21(6):813–823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89(2):164–177

    PubMed  Google Scholar 

  • Chen C, Constantinou A, Chester KA, Vyas B, Canis K, Haslam SM, Dell A, Epenetos AA, Deonarain MP (2012) Glycoengineering approach to half-life extension of recombinant biotherapeutics. Bioconjug Chem 23(8):1524–1533

    CAS  PubMed  Google Scholar 

  • Chiba Y, Akeboshi H (2009) Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull 32(5):786–795

    CAS  PubMed  Google Scholar 

  • Chiba Y, Jigami Y (2007) Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 11(6):670–676

    CAS  PubMed  Google Scholar 

  • Chotigeat W, Watanapokasin Y, Mahler S, Gray PP (1994) Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15(1–3):217–221

    CAS  PubMed  Google Scholar 

  • Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. New Engl J Med 358(11):1109–1117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa AR, Withers J, Rodrigues ME, McLoughlin N, Henriques M, Oliveira R, Rudd PM, Azeredo J (2013) The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells. Nat Biotechnol 30(5):563–572

    CAS  Google Scholar 

  • Crispin M, Bowden TA, Coles CH, Harlos K, Aricescu AR, Harvey DJ, Stuart DI, Jones EY (2009) Carbohydrate and domain architecture of an immature antibody glycoform exhibiting enhanced effector functions. J Mol Biol 387(5):1061–1066

    CAS  PubMed  Google Scholar 

  • Croset A, Delafosse L, Gaudry JP, Arod C, Glez L, Losberger C, Begue D, Krstanovic A, Robert F, Vilbois F, Chevalet L, Antonsson B (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161(3):336–348

    CAS  PubMed  Google Scholar 

  • Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96(3):538–549

    CAS  PubMed  Google Scholar 

  • Curling EM, Hayter PM, Baines AJ, Bull AT, Gull K, Strange PG, Jenkins N (1990) Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem J 272(2):333–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson SK, Hunt LA (1985) Sindbis virus glycoproteins are abnormally glycosylated in Chinese hamster ovary cells deprived of glucose. J Gen Virol 66(Pt 7):1457–1468

    CAS  PubMed  Google Scholar 

  • Davies SL, Lovelady CS, Grainger RK, Racher AJ, Young RJ, James DC (2013) Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng 110(1):260–274

    CAS  PubMed  Google Scholar 

  • Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry 20(9):2361–2370

    CAS  PubMed  Google Scholar 

  • Doyle C, Butler M (1990) The effect of pH on the toxicity of ammonia to a murine hybridoma. J Biotechnol 15(1–2):91–100

    CAS  PubMed  Google Scholar 

  • Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20(6):700–707

    CAS  PubMed  Google Scholar 

  • Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31(4):290–299

    CAS  PubMed  Google Scholar 

  • El Mai N, Donadio-Andrei S, Iss C, Calabro V, Ronin C (2013) Engineering a human-like glycosylation to produce therapeutic glycoproteins based on 6-linked sialylation in CHO cells. Methods Mol Biol 988:19–29

    PubMed  Google Scholar 

  • Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32(12):1146–1155

    CAS  PubMed  Google Scholar 

  • Fan L, Zhao L, Ye Z, Sun Y, Kou T, Zhou Y, Tan WS (2010) Effect of culture temperature on TNFR-Fc productivity in recombinant glutamine synthetase-Chinese hamster ovary cells. Biotechnol Lett 32(9):1239–1244

    CAS  PubMed  Google Scholar 

  • Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P (2006a) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861

    CAS  PubMed  Google Scholar 

  • Ferrara C, Stuart F, Sondermann P, Brunker P, Umana P (2006b) The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281(8):5032–5036

    CAS  PubMed  Google Scholar 

  • Fukuda M, Sasaki H, Fukuda MN (1989) Structure and role of carbohydrate in human erythropoietin. Adv Exp Med Biol 271:53–67

    CAS  PubMed  Google Scholar 

  • Gawlitzek M, Valley U, Wagner R (1998) Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 57(5):518–528

    CAS  PubMed  Google Scholar 

  • Gawlitzek M, Estacio M, Furch T, Kiss R (2009) Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnol Bioeng 103(6):1164–1175

    CAS  PubMed  Google Scholar 

  • Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genetic Eng Rev 28:147–175

    CAS  Google Scholar 

  • Goh JS, Liu Y, Liu H, Chan KF, Wan C, Teo G, Zhou X, Xie F, Zhang P, Zhang Y, Song Z (2014) Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnol J 9(1):100–109

    CAS  PubMed  Google Scholar 

  • Grainger RK, James DC (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol Bioeng 110(11):2970–2983

    CAS  PubMed  Google Scholar 

  • Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ET, Gerritsen J, van Berkel PH (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108(7):1591–1602

    CAS  PubMed  Google Scholar 

  • Grammatikos SI, Valley U, Nimtz M, Conradt HS, Wagner R (1998) Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol Prog 14(3):410–419

    CAS  PubMed  Google Scholar 

  • Gu X, Wang DI (1998) Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58(6):642–648

    CAS  PubMed  Google Scholar 

  • Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 13(17):5021–5034

    CAS  PubMed  Google Scholar 

  • Haryadi R, Zhang P, Chan KF, Song Z (2013) CHO-gmt5, a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies. Bioengineered 4(2):90–94

    PubMed Central  PubMed  Google Scholar 

  • Hayter PM, Curling EM, Baines AJ, Jenkins N, Salmon I, Strange PG, Tong JM, Bull AT (1992) Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-gamma. Biotechnol Bioeng 39(3):327–335

    CAS  PubMed  Google Scholar 

  • Heidemann R, Lutkemeyer D, Buntemeyer H, Lehmann J (1998) Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentrations upon the metabolism of mammalian cell lines during batch and continuous cultures. Cytotechnology 26(3):185–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652

    CAS  PubMed  Google Scholar 

  • Hong JK, Cho SM, Yoon SK (2010) Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Appl Microbiol Biotechnol 88(4):869–876

    CAS  PubMed  Google Scholar 

  • Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX (2012) Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134(29):12308–12318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M (2007) Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84

    PubMed Central  PubMed  Google Scholar 

  • Ishino T, Wang M, Mosyak L, Tam A, Duan W, Svenson K, Joyce A, O’Hara DM, Lin L, Somers WS, Kriz R (2013) Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics. J Biol Chem 288(23):16529–16537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jan DC, Petch DA, Huzel N, Butler M (1997) The effect of dissolved oxygen on the metabolic profile of a murine hybridoma grown in serum-free medium in continuous culture. Biotechnol Bioeng 54(2):153–164

    CAS  PubMed  Google Scholar 

  • Jassal R, Jenkins N, Charlwood J, Camilleri P, Jefferis R, Lund J (2001) Sialylation of human IgG-Fc carbohydrate by transfected rat alpha2,6-sialyltransferase. Biochem Biophys Res Commun 286(2):243–249

    CAS  PubMed  Google Scholar 

  • Jenkins N, Curling EM (1994) Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol 16(5):354–364

    CAS  PubMed  Google Scholar 

  • Jenkins N, Parekh RB, James DC (1996) Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 14(8):975–981

    CAS  PubMed  Google Scholar 

  • Jeong YT, Choi O, Lim HR, Son YD, Kim HJ, Kim JH (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18(12):1945–1952

    CAS  PubMed  Google Scholar 

  • Jones D, Kroos N, Anema R, van Montfort B, Vooys A, Van Der Kraats S, Van Der Helm E, Smits S, Schouten J, Brouwer K et al (2003) High-level expression of recombinant IgG in the human cell line PER.C6. Biotechnol Prog 19:163–168

    CAS  PubMed  Google Scholar 

  • Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M (2007a) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130(3):300–310

    CAS  PubMed  Google Scholar 

  • Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M (2007b) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17(1):104–118

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787):670–673

    CAS  PubMed  Google Scholar 

  • Khattak SF, Xing Z, Kenty B, Koyrakh I, Li ZJ (2010) Feed development for fed-batch CHO production process by semisteady state analysis. Biotechnol Prog 26(3):797–804

    CAS  PubMed  Google Scholar 

  • Ko K, Brodzik R, Steplewski Z (2009) Production of antibodies in plants: approaches and perspectives. Curr Top Microbiol Immunol 332:55–78

    CAS  PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    CAS  PubMed  Google Scholar 

  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–989

    CAS  PubMed  Google Scholar 

  • Kunkel JP, Jan DC, Jamieson JC, Butler M (1998) Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol 62(1):55–71

    CAS  PubMed  Google Scholar 

  • Lee HJ, Chang M, Kim JM, Hong H, Maeng K, Koo J, Chang S, Cho MS (2013) Application of a new human cell line, F2N78, in the transient and stable production of recombinant therapeutics. Biotechnol Prog 29(2):432–440

    CAS  PubMed  Google Scholar 

  • Lennarz WJ (1987) Protein glycosylation in the endoplasmic reticulum: current topological issues. Biochemistry 26(23):7205–7210

    CAS  PubMed  Google Scholar 

  • Liu B, Spearman M, Doering J, Lattova E, Perreault H, Butler M (2014) The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 170:17–27

    CAS  PubMed  Google Scholar 

  • Lomino JV, Naegeli A, Orwenyo J, Amin MN, Aebi M, Wang LX (2013) A two-step enzymatic glycosylation of polypeptides with complex N-glycans. Bioorg Med Chem 21(8):2262–2270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loos A, Steinkellner H (2012) IgG-Fc glycoengineering in non-mammalian expression hosts. Arch Biochem Biophys 526(2):167–173

    CAS  PubMed  Google Scholar 

  • Misaizu T, Matsuki S, Strickland TW, Takeuchi M, Kobata A, Takasaki S (1995) Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 86(11):4097–4104

    CAS  PubMed  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mrazek H, Weignerova L, Bojarova P, Novak P, Vanek O, Bezouska K (2013) Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 31(1):17–37

    CAS  PubMed  Google Scholar 

  • Naso MF, Tam SH, Scallon BJ, Raju TS (2010) Engineering host cell lines to reduce terminal sialylation of secreted antibodies. MAbs 2(5):519–527

    PubMed Central  PubMed  Google Scholar 

  • Noguchi A, Mukuria CJ, Suzuki E, Naiki M (1995) Immunogenicity of N-glycolylneuraminic acid-containing carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. J Biochem 117(1):59–62

    CAS  PubMed  Google Scholar 

  • Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347

    CAS  PubMed  Google Scholar 

  • Okeley NM, Alley SC, Anderson ME, Boursalian TE, Burke PJ, Emmerton KM, Jeffrey SC, Klussman K, Law CL, Sussman D, Toki BE, Westendorf L, Zeng W, Zhang X, Benjamin DR, Senter PD (2013) Development of orally active inhibitors of protein and cellular fucosylation. Proc Natl Acad Sci U S A 110(14):5404–5409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olovnikova NI, Grigorieva OV, Petrov AV (2012) Effector properties and glycosylation patterns of recombinant human anti-d-IgG1 antibodies produced by human PER.C6((R)) cells. Bull Exp Biol Med 154(2):245–249

    CAS  PubMed  Google Scholar 

  • Onitsuka M, Kim WD, Ozaki H, Kawaguchi A, Honda K, Kajiura H, Fujiyama K, Asano R, Kumagai I, Ohtake H, Omasa T (2012) Enhancement of sialylation on humanized IgG-like bispecific antibody by overexpression of alpha2,6-sialyltransferase derived from Chinese hamster ovary cells. Appl Microbiol Biotechnol 94(1):69–80

    CAS  PubMed  Google Scholar 

  • Onitsuka M, Kawaguchi A, Asano R, Kumagai I, Honda K, Ohtake H, Omasa T (2013) Glycosylation analysis of an aggregated antibody produced by Chinese hamster ovary cells in bioreactor culture. J Biosci Bioeng

    Google Scholar 

  • Padlan E (1991) Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci U S A 80:6632–6636

    Google Scholar 

  • Park JH, Wang Z, Jeong HJ, Park HH, Kim BG, Tan WS, Choi SS, Park TH (2012) Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Appl Microbiol Biotechnol

    Google Scholar 

  • Pels Rijcken WR, Overdijk B, Van den Eijnden DH, Ferwerda W (1995) The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem J 305(Pt 3):865–870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rademacher T, Jaques AJ, Williams PJ (1996) The defining characteristics of immunoglobulin glycosylation. In: Isenberg D, Rademacher T (eds) Abnormalities of IgG glycosylation and immunological disorders. Wiley, New York

    Google Scholar 

  • Ratner M (2014) Genentech’s glyco-engineered antibody to succeed Rituxan. Nat Biotechnol 32(1):6–7

    CAS  PubMed  Google Scholar 

  • Raymond C, Robotham A, Kelly J, Lattova E, Perreault H, Durocher Y (2012) In: Petrescu SM (ed) Production of highly sialylated monoclonal antibodies, Intech Open Science, INTECHOPEN.COM, Glycosylation. pp 397–417

    Google Scholar 

  • Rearick JI, Chapman A, Kornfeld S (1981) Glucose starvation alters lipid-linked oligosaccharide biosynthesis in Chinese hamster ovary cells. J Biol Chem 256(12):6255–6261

    CAS  PubMed  Google Scholar 

  • Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30

    CAS  PubMed  Google Scholar 

  • Rodriguez J, Spearman M, Tharmalingam T, Sunley K, Lodewyks C, Huzel N, Butler M (2010) High productivity of human recombinant beta-interferon from a low-temperature perfusion culture. J Biotechnol 150(4):509–518

    CAS  PubMed  Google Scholar 

  • Rose RJ, van Berkel PH, van den Bremer ET, Labrijn AF, Vink T, Schuurman J, Heck AJ, Parren PW (2013) Mutation of Y407 in the CH3 domain dramatically alters glycosylation and structure of human IgG. MAbs 5(2):219–228

    PubMed Central  PubMed  Google Scholar 

  • Rothman RJ, Perussia B, Herlyn D, Warren L (1989a) Antibody-dependent cytotoxicity mediated by natural killer cells is enhanced by castanospermine-induced alterations of IgG glycosylation. Mol Immunol 26(12):1113–1123

    CAS  PubMed  Google Scholar 

  • Rothman RJ, Warren L, Vliegenthart JF, Hard KJ (1989b) Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochemistry 28(3):1377–1384

    CAS  PubMed  Google Scholar 

  • Saraswat M, Musante L, Ravida A, Shortt B, Byrne B, Holthofer H (2013) Preparative purification of recombinant proteins: current status and future trends. Biomed Res Int 2013:312709

    PubMed Central  PubMed  Google Scholar 

  • Sareneva T, Pirhonen J, Cantell K, Julkunen I (1995) N-glycosylation of human interferon-gamma: glycans at Asn-25 are critical for protease resistance. Biochem J 308(Pt 1):9–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534

    CAS  PubMed  Google Scholar 

  • Schuster M, Umana P, Ferrara C, Brunker P, Gerdes C, Waxenecker G, Wiederkum S, Schwager C, Loibner H, Himmler G, Mudde GC (2005) Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res 65(17):7934–7941

    CAS  PubMed  Google Scholar 

  • Sealover NR, Davis AM, Brooks JK, George HJ, Kayser KJ, Lin N (2013) Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 167(1):24–32

    CAS  PubMed  Google Scholar 

  • Seo JS, Kim YJ, Cho JM, Baek E, Lee GM (2013) Effect of culture pH on recombinant antibody production by a new human cell line, F2N78, grown in suspension at 33.0 degrees C and 37.0 degrees C. Appl Microbiol Biotechnol 97(12):5283–5291

    CAS  PubMed  Google Scholar 

  • Seo JS, Min BS, Kim YJ, Cho JM, Baek E, Cho MS, Lee GM (2014) Effect of glucose feeding on the glycosylation quality of antibody produced by a human cell line, F2N78, in fed-batch culture. Appl Microbiol Biotechnol

    Google Scholar 

  • Shahrokh Z, Royle L, Saldova R, Bones J, Abrahams JL, Artemenko NV, Flatman S, Davies M, Baycroft A, Sehgal S, Heartlein MW, Harvey DJ, Rudd PM (2011) Erythropoietin produced in a human cell line (Dynepo) has significant differences in glycosylation compared with erythropoietins produced in CHO cell lines. Mol Pharm 8(1):286–296

    CAS  PubMed  Google Scholar 

  • Shatz W, Chung S, Li B, Marshall B, Tejada M, Phung W, Sandoval W, Kelley B, Scheer JM (2013) Knobs-into-holes antibody production in mammalian cell lines reveals that asymmetric afucosylation is sufficient for full antibody-dependent cellular cytotoxicity. MAbs 5(6):872–881

    PubMed Central  PubMed  Google Scholar 

  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740

    CAS  PubMed  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473

    CAS  PubMed  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94(8):1626–1635

    CAS  PubMed  Google Scholar 

  • Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. Biodrugs 24(1):9–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Son YD, Jeong YT, Park SY, Kim JH (2011) Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21(8):1019–1028

    CAS  PubMed  Google Scholar 

  • Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV (2013) General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci U S A 110(24):9868–9872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol 3(4) pii: a005199. doi:10.1101/cshperspect.a005199

  • Stanley P, Schachter H, Taniguchi N (2009) Chapter 8; Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sunley K, Tharmalingam T, Butler M (2008) CHO cells adapted to hypothermic growth produce high yields of recombinant beta-interferon. Biotechnol Prog 24(4):898–906

    CAS  PubMed  Google Scholar 

  • Tachibana H, Jiyoun K, Taniguchi K, Ushio Y, Teruya K, Osada K, Inoue Y, Shirahata S, Murakami H (1996) Modified antigen-binding of human antibodies with glycosylation variations of the light chains produced in sugar-limited human hybridoma cultures. In Vitro Cell Dev Biol Animal 32(3):178–183

    CAS  Google Scholar 

  • Tachibana H, Kim JY, Shirahata S (1997) Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetylglucosamine-supplemented hybridoma cultures. Cytotechnology 23(1–3):151–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian E, Ten Hagen KG (2009) Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj J 26(3):325–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D (2006) Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94(6):1033–1044

    CAS  PubMed  Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    CAS  PubMed  Google Scholar 

  • Valley U, Nimtz M, Conradt HS, Wagner R (1999) Incorporation of ammonium into intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol Bioeng 64(4):401–417

    CAS  PubMed  Google Scholar 

  • van Berkel PH, Gerritsen J, Perdok G, Valbjorn J, Vink T, van de Winkel JG, Parren PW (2009) N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnol Prog 25(1):244–251

    PubMed  Google Scholar 

  • van Berkel PH, Gerritsen J, van Voskuilen E, Perdok G, Vink T, van de Winkel JG, Parren PW (2010) Rapid production of recombinant human IgG With improved ADCC effector function in a transient expression system. Biotechnol Bioeng 105(2):350–357

    PubMed  Google Scholar 

  • von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V (2010) Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-d-lyxo-4-hexulose reductase. Glycobiology 20(12):1607–1618

    Google Scholar 

  • Wang LX, Lomino JV (2012) Emerging technologies for making glycan-defined glycoproteins. ACS Chem Biol 7(1):110–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Hilder TL, van der Drift K, Sloan J, Wee K (2013) Structural characterization of recombinant alpha-1-antitrypsin expressed in a human cell line. Anal Biochem 437(1):20–28

    CAS  PubMed  Google Scholar 

  • Webster DE, Thomas MC (2012) Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 30(2):410–418

    CAS  PubMed  Google Scholar 

  • Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3(2):119–128

    CAS  PubMed  Google Scholar 

  • Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336

    CAS  PubMed  Google Scholar 

  • Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15(1):26–32

    CAS  PubMed  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    CAS  PubMed  Google Scholar 

  • Xie L, Wang DI (1997) Integrated approaches to the design of media and feeding strategies for fed-batch cultures of animal cells. Trends Biotechnol 15(3):109–113

    CAS  PubMed  Google Scholar 

  • Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622

    CAS  PubMed  Google Scholar 

  • Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68(4):370–380

    CAS  PubMed  Google Scholar 

  • Zanghi JA, Mendoza TP, Knop RH, Miller WM (1998) Ammonia inhibits neural cell adhesion molecule polysialylation in Chinese hamster ovary and small cell lung cancer cells. J Cell Physiol 177(2):248–263

    CAS  PubMed  Google Scholar 

  • Zhang P, Tan DL, Heng D, Wang T, Mariati, Yang Y, Song Z (2010) A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metab Eng 12(6):526–536

    CAS  PubMed  Google Scholar 

  • Zhang P, Chan KF, Haryadi R, Bardor M, Song Z (2013) CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Adv Biochem Eng Biotechnol 131:63–87

    PubMed  Google Scholar 

  • Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3(6):568–576

    PubMed Central  PubMed  Google Scholar 

  • Zhong X, Cooley C, Seth N, Juo ZS, Presman E, Resendes N, Kumar R, Allen M, Mosyak L, Stahl M, Somers W, Kriz R (2012) Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: molecular insights and effector modulation of N-acetylglucosaminyltransferase I. Biotechnol Bioeng 109(7):1723–1734

    CAS  PubMed  Google Scholar 

  • Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan C, Edmunds T (2008) Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng 99(3):652–665

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spearman, M., Butler, M. (2015). Glycosylation in Cell Culture. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_9

Download citation

Publish with us

Policies and ethics