Skip to main content

Section B Fire and Explosion - A Study of Flame Spread in Engineered Cardboard Fuel Beds Part I: Correlations and Observations of Flame Spread

  • Chapter
  • First Online:
Progress in Scale Modeling, Volume II

Abstract

Wind-aided laboratory fires spreading through laser-cut cardboard fuel beds were instrumented and analyzed for physical processes associated with spread. Flames in the spanwise direction appeared as a regular series of peaks and troughs that scaled directly with flame length. Flame structure in the stream-wise direction fluctuated with the forward advection of coherent parcels that originated near the rear edge of the flame zone. Thermocouples arranged longitudinally in the fuel beds revealed the frequency of temperature fluctuations decreased with flame length but increased with wind speed. The downstream extent of these fluctuations from the leading flame edge scaled with Froude number and flame zone depth. The behaviors are remarkably similar to those of boundary layers, suggesting a dominant role for buoyancy in determining wildland fire spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

D :

Horizontal flame zone depth (m)

f :

Frequency (Hz)

g :

Acceleration of gravity (9.81 ms−2)

L :

Flame length (m)

R :

Fire spread rate (ms−1)

t :

Time (s)

U :

Horizontal wind speed (m/s)

w :

Fuel loading (kg m−2)

X :

Horizontal stream-wise distance (m)

Y :

Transverse width of fuel bed (m)

Z :

Vertical fuel bed depth (m)

λ:

Transverse wavelength of flames (m)

r :

Pearson correlation coefficient

f :

Flame residence time

References

  1. Finney, M., Cohen, J., McAllister, S., Jolly, W.: On the need for a theory of wildland fire spread. Int. J. Wildl. Fire 22, 25–36 (2013)

    Article  Google Scholar 

  2. Alvares, N., Blackshear, J., Perry, L., Murty, K.: The influence of free convection on the ignition of vertical cellulosic panels by thermal radiation. Combust. Sci. Technol. 1, 407–413 (1970)

    Article  Google Scholar 

  3. Martin, S.: Diffusion controlled ignition of cellulosic materials by intense radiant energy. Symp. (Int.) Combust. 10, 877–890 (1965)

    Article  Google Scholar 

  4. Rothermel, R., Anderson, H.: Fire spread characteristics determined in the laboratory. US For. Serv. (1966)

    Google Scholar 

  5. Baines, P.: Physical mechanisms for the propagation of surface fires. Math. Comput. Model. 13, 83–94 (1990)

    Article  Google Scholar 

  6. Fang, J., Steward, F.: Flame spread through randomly packed fuel particles. Combust. Flame 13(4), 392–398 (1969)

    Article  Google Scholar 

  7. Cox, G., Chitty, R.: Some stochastic properties of fire plumes. Fire Mater. 6(3–4), 127–134 (1982)

    Article  Google Scholar 

  8. Cetegen, B., Ahmed, T.: Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93, 157–184 (1993)

    Article  Google Scholar 

  9. Atkinson, G., Drysdale, D., Wu, Y.: Fire driven flow in an inclined trench. Fire Saf. J. 25, 141–158 (1995)

    Article  Google Scholar 

  10. Woodburn, P., Drysdale, D.: Fires in inclined trenches: time-varying features of the attached plume. Fire Saf. J. 31, 165–172 (1998)

    Article  Google Scholar 

  11. Dupuy, J.L., Marecha, J., Portier, D., Valette, J.-C.: The effects of slope and fuel bed width on laboratory fire behavior. Intl. J. Wildl. Fire 20, 272–288 (2011)

    Article  Google Scholar 

  12. Fons, W.L.: Analysis of fire spread in light forest fuels. J. Agric. Res. 72(3), 93–121 (1946)

    Google Scholar 

  13. Vogel, M., Williams, F.A.: Flame propagation along matchstick arrays. Combust. Sci. Technol. 1(6), 429–436 (1970)

    Article  Google Scholar 

  14. Prahl, J.M., Tien, J.S.: Preliminary investigations of forced convection on flame propagation along paper and matchstick arrays. Combust. Sci. Technol. 7(6), 271–282 (1973)

    Article  Google Scholar 

  15. Carrier, G., Fendell, F., Wolff, M.: Wind-aided firespread across arrays of discrete fuel elements. II. Experiments. Combust. Sci. Technol. 75, 261–289 (1991)

    Article  Google Scholar 

  16. Catchpole, W., Catchpole, E., Butler, B., Rothermel, R.C., Morris, G.A., Latham, D.J.: Rate of spread of free-burning fires in woody fuels in a wind tunnel. Combust. Sci. Technol. 131, 1–37 (1998)

    Article  Google Scholar 

  17. Emmons, H., Shen, T.: Fire spread in paper arrays. Proc. Combust. Inst. 13(1), 917–926 (1971)

    Article  Google Scholar 

  18. Byram, G., Clements, H., Elliott, E., George, P.: An experimental study of model fires. USDA Forest Service, Southeastern Forest Experiment (1964)

    Google Scholar 

  19. Smith, D.: Measurements of flame length and flame angle in an inclined trench. Fire Saf. J. 18, 231–244 (1992)

    Article  Google Scholar 

  20. Malalasekera, W.M.G., Versteeg, H.K., Gilchrist, K.: A review of research and an experimental study on the pulsation of buoyant diffusion flames and pool fires. Fire Mater. 20(6), 261–271 (1996)

    Article  Google Scholar 

  21. Hall, P.: The linear development of Goertler vortices in growing boundary-layers. J. Fluid Mech. 130, 41–58 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Herbert, T.: Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487–526 (1988)

    Article  Google Scholar 

  23. Kachinov, Y.: Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411–482 (1994)

    Article  Google Scholar 

  24. Sparrow, E., Husar, R.: Longitudinal vortices in natural convection flow on inclined plates. J. Fluid Mech. 37, 251–255 (1969)

    Article  Google Scholar 

  25. Maughan, J., Incropera, F.: Secondary flow in horizontal channels heated from below. Exp. Fluids 5, 334–343 (1987)

    Article  Google Scholar 

  26. Beer, T.: The interaction of wind and fire. Boundary-Layer Meteorol. 54(3), 287–308 (1991)

    Article  MathSciNet  Google Scholar 

  27. Hussain, A., Zaman, K.: An experimental study of organized motions in the turbulent boundary layer. J. Fluid Mech. 159, 85–104 (1985)

    Article  Google Scholar 

  28. Bernal, L., Roshko, A.: Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499–525 (1986)

    Article  Google Scholar 

  29. Robinson, S.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–639 (1991)

    Article  Google Scholar 

  30. Li, F., Malik, M.: Fundamental and subharmonic secondary instabilities of Görtler vortices. J. Fluid Mech. 297, 77–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Oka, Y., Kurioka, H., Satoh, H., Sugawa, O.: Modeling of unconfined flame tilt in cross-winds. In: Proceedings of 6th International Symposium on Fire Safety Science, pp. 1101–1112 (1999)

    Google Scholar 

  32. Raj, P.: A physical model and improved experimental data correlation for wind induced flame drag in pool fires. Fire. Technol 46, 579–609 (2010)

    Article  Google Scholar 

  33. Weise, D., Biging, G.: Effects of wind velocity and slope on flame properties. Can. J. Forest Res. 26(10), 1849–1858 (1996)

    Article  Google Scholar 

  34. Nelson, R., Adkins, C.W.: Flame characteristics of wind-driven surface fires. Can. J. Forest Res. 16, 1293–1300 (1986)

    Article  Google Scholar 

  35. Anderson, W., Catchpole, E., Butler, B.: Convective heat transfer in fire spread through fine fuel beds. Intl. J. Wildl. Fire 19, 284–298 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Finney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Finney, M.A., Forthofer, J., Grenfell, I.C., Adam, B.A., Akafuah, N.K., Saito, K. (2015). Section B Fire and Explosion - A Study of Flame Spread in Engineered Cardboard Fuel Beds Part I: Correlations and Observations of Flame Spread. In: Saito, K., Ito, A., Nakamura, Y., Kuwana, K. (eds) Progress in Scale Modeling, Volume II. Springer, Cham. https://doi.org/10.1007/978-3-319-10308-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10308-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10307-5

  • Online ISBN: 978-3-319-10308-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics