On Metalogical Relativism

  • Vladimir L. VasyukovEmail author
Part of the Studies in Universal Logic book series (SUL)


The conception of logical pluralism claims that there is not one true logic but there are many. The conception of metalogical relativism is based on the assumption that there is not one correct answer as to whether a given argument is deductively valid, but there are many—many non-classical answers depending of which non-classical metalogic we exploit: intuitionistic, relevant, quantum, many-valued, etc. Since this leads to the interplay between logics and metalogics the question arises: What is the nature of this interplay? The Universal Logics approach gives us hints at some answers to this question but at the expense of the exploitation of different combination of non-classical logical systems leading to the transition from metalogical pluralism to metalogical monism. The only problem in this case is the impossibility of the exploitation of an infinite combination of non-classical systems. There are also some semantic keys to the issue under consideration which are connected with the problem of the interplay of classical and non-classical universes: non-classical logics would be interpreted in the classical universe, and vice versa, the classical logic would be interpreted in non-classical universes.


Logical relativism Logical pluralism Logical monism Metalogical pluralism Non-classical metalogics Universal metalogics 

Mathematics Subject Classification

03A05 03B62 97E30 


  1. 1.
    Beall, J.C., Restall, G.: Logical pluralism. Australas. J. Philos 78, 475–493 (2000) CrossRefGoogle Scholar
  2. 2.
    Beall, J.C., Restall, G.: Defending logical pluralism. Logical consequence: rival approaches. In: Woods, J., Brown, B. (eds.) Proceedings of the 1999 Conference of the Society of Exact Philosophy, pp. 1–22. Hermes, Stanmore (2001) Google Scholar
  3. 3.
    Beziau, J.-Y.: The relativity and universality of logic. Synthese (2014). doi: 10.1007/s11229-014-0419-0. Published Online: 20 March 2014. Google Scholar
  4. 4.
    Carnap, R.: The Logical Syntax of Language. Little eld, Adams and Co. (1959). Translated by Amethe Smeaton Google Scholar
  5. 5.
    Cook, R.: Let a thousand flowers bloom: a tour of logical pluralism. Philos. Compass 5/6, 492–504 (2010) CrossRefGoogle Scholar
  6. 6.
    Goldblatt, R.I.: Semantic analysis of orthologic. J. Philos. Log. 3(1–2), 19–35 (1974) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jeffrey, R.C.: Formal Logic: Its Scope and Its Limits, 3rd edn. McGraw Hill, New York (1991) zbMATHGoogle Scholar
  8. 8.
    Kripke, S.: Outline of truth theory. J. Philos. 72(9), 695–717 (1975) Google Scholar
  9. 9.
    Kron, A., Marič, Z., Vujosevič, S.: Entailment and quantum logic. In: Beltrametti, S., Van Fraassen, B. (eds.) Current Issues in Quantum Logic, pp. 193–207. Plenum, New York (1981) CrossRefGoogle Scholar
  10. 10.
    McLarty, C.: Elementary Categories, Elementary Toposes. Clarendon Press, Oxford (1992) zbMATHGoogle Scholar
  11. 11.
    Priest, G.: Doubt Truth to Be a Liar. Clarendon Press, Oxford (2008) Google Scholar
  12. 12.
    Read, S.: Relevant Logic. Blackwell, Oxford (1988) Google Scholar
  13. 13.
    Read, S.: Monism: the one true logic. In: DeVidi, D., Kenyon, T. (eds.) A Logical Approach to Philosophy: Essays in Honour of Graham Solomon, pp. 193–209. Springer, Berlin (2006) CrossRefGoogle Scholar
  14. 14.
    Restall, G.: Carnap’s tolerance, meaning and logical pluralism. J. Philos. 99, 426–443 (2002) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Routley, R., Meyer, R.: Semantics of entailment. In: Leblanc, H. (ed.) Truth Syntax and Modality, pp. 199–243. Amsterdam–London (1973) Google Scholar
  16. 16.
    Sher, G.Y.: The Bounds of Logic. A Generalized Viewpoint. MIT Press, Cambridge (1991) zbMATHGoogle Scholar
  17. 17.
    Sylvan, R.: Philosophy, politics and pluralism: 1. Relevant modellings and arguments. J. Non-Class. Log. 4(1), 57–107 (1987) MathSciNetGoogle Scholar
  18. 18.
    Vasyukov, V.L.: The completeness of the factor semantics for Łukasiewicz’s infinite-valued logics. Stud. Log. 52(1), 143–167 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Vasyukov, V.L.: Paraconsistency in categories. In: Batens, D., Mortensen, C., Priest, G., van Bendegem, J.-P. (eds.) Frontiers of Paraconsistent Logic, pp. 263–278. Research Studies Press, Baldock (2000) Google Scholar
  20. 20.
    Vasyukov, V.L.: Structuring the universe of universal logic. Log. Univers. 1/2, 277–294 (2007) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vasyukov, V.L.: An ontology of quantum mathematics. Bull. Peoples Friendsh. Univ. Russ. Philos. 3, 57–70 (2009) (in Russian) Google Scholar
  22. 22.
    Vasyukov, V.L.: Paraconsistency in categories: case of relevant logic. Stud. Log. 98(3), 429–443 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Vasyukov, V.L.: Potoses: paraconsistent categories for paraconsistent logics. Manuscript (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of PhilosophyRussian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations