Advertisement

Predictive Task Monitoring for Business Processes

  • Cristina Cabanillas
  • Claudio Di Ciccio
  • Jan Mendling
  • Anne Baumgrass
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8659)

Abstract

Information sources providing real-time status of physical objects have drastically increased in recent times. So far, research in business process monitoring has mainly focused on checking the completion of tasks. However, the availability of real-time information allows for a more detailed tracking of individual business tasks. This paper describes a framework for controlling the safe execution of tasks and signalling possible misbehaviours at runtime. It outlines a real use case on smart logistics and the preliminary results of its application.

Keywords

Process Modelling Process Monitoring Support Vector Machines Prediction Event Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.: Event Stream Processing Units in Business Processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 187–202. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Backmann, M., Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: Model-Driven Event Query Generation for Business Process Monitoring. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 406–418. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Barros, A., Decker, G., Grosskopf, A.: Complex Events in Business Processes. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Birukou, A., et al.: An Integrated Solution for Runtime Compliance Governance in SOA. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 706–707. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards the Enhancement of Business Process Monitoring for Complex Logistics Chains. In: Lohmann, N., et al. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 305–317. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  8. 8.
    Dahanayake, A., Welke, R., Cavalheiro, G.: Improving the Understanding of BAM Technology for Real-Time Decision Support. IJBIS 7(1) (December 2011)Google Scholar
  9. 9.
    Decker, G., Großkopf, A., Barros, A.P.: A Graphical Notation for Modeling Complex Events in Business Processes. In: EDOC, pp. 27–36. IEEE Computer Society (2007)Google Scholar
  10. 10.
    Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process Management. In: Gasevic, D., Hatala, M., Nezhad, H.R.M., Reichert, M. (eds.) EDOC, pp. 107–116. IEEE (2013)Google Scholar
  11. 11.
    Kunz, S., Fickinger, T., Prescher, J., Spengler, K.: Managing Complex Event Processes with Business Process Modeling Notation. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 78–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Liao, F., Wang, J.L., Yang, G.-H.: Reliable Robust Flight Tracking Control: an LMI Approach. IEEE Trans. Control Systems Technology 10(1), 76–89 (2002)CrossRefGoogle Scholar
  13. 13.
    Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley (2001)Google Scholar
  14. 14.
    Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)Google Scholar
  15. 15.
    Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring Business Constraints with the Event Calculus. ACM TIST 5(1) (2013)Google Scholar
  16. 16.
    Pang, L.X., Chawla, S., Liu, W., Zheng, Y.: On Detection of Emerging Anomalous Traffic Patterns Using GPS Data. Data & Knowledge Engineering (2013)Google Scholar
  17. 17.
    Thullner, R., Rozsnyai, S., Schiefer, J., Obweger, H., Suntinger, M.: Proactive Business Process Compliance Monitoring with Event-Based Systems. In: EDOC Workshops. EDOCW 2011, pp. 429–437. IEEE Computer Society, Washington, DC (2011)Google Scholar
  18. 18.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Prediction Based on Process Mining. Inf. Syst. 36(2) (2011)Google Scholar
  19. 19.
    Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer (1982)Google Scholar
  20. 20.
    Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-Based Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cristina Cabanillas
    • 1
  • Claudio Di Ciccio
    • 1
  • Jan Mendling
    • 1
  • Anne Baumgrass
    • 2
  1. 1.Institute for Information Business at ViennaUniversity of Economics and BusinessAustria
  2. 2.Hasso Plattner InstituteUniversity of PotsdamGermany

Personalised recommendations