Skip to main content

Temporal Anomaly Detection in Business Processes

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8659)

Abstract

The analysis of business processes is often challenging not only because of intricate dependencies between process activities but also because of various sources of faults within the activities. The automated detection of potential business process anomalies could immensely help business analysts and other process participants detect and understand the causes of process errors.

This work focuses on temporal anomalies, i.e., anomalies concerning the runtime of activities within a process. To detect such anomalies, we propose a Bayesian model that can be automatically inferred form the Petri net representation of a business process. Probabilistic inference on the above model allows the detection of non-obvious and interdependent temporal anomalies.

Keywords

  • outlier detection
  • documentation
  • statistical method
  • Bayesian networks

This work was partially supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) grant 612052 (SERAMIS).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10172-9_15
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-10172-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wil, M.P.: van der Aalst. Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)

    Google Scholar 

  3. van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  4. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking Using Cost-Based Fitness Analysis. In: EDOC 2011, pp. 55–64. IEEE (2011)

    Google Scholar 

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    CrossRef  Google Scholar 

  6. Cook, J.E., He, C., Ma, C.: Measuring Behavioral Correspondence to a Timed Concurrent Model. In: ICSM 2001, pp. 332–341. IEEE (2001)

    Google Scholar 

  7. de Lima Bezerra, F., Wainer, J.: Algorithms for Anomaly Detection of Traces in Logs of Process Aware Information Systems. Inf. Syst. 38(1), 33–44 (2013)

    CrossRef  Google Scholar 

  8. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance Checking between Business Processes and Business Contracts. In: EDOC 2006, pp. 221–232 (2006)

    Google Scholar 

  9. Grubbs, F.E.: Procedures for Detecting Outlying Observations in Samples. Technometrics 11(1), 1–21 (1969)

    CrossRef  Google Scholar 

  10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann (2006)

    Google Scholar 

  11. Hao, M.C., Keim, D.A., Dayal, U., Schneidewind, J.: Business Process Impact Visualization and Anomaly Detection. Information Visualization 5(1), 15–27 (2006)

    CrossRef  Google Scholar 

  12. Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business Processes – A Survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  13. Parzen, E.: On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York (2000)

    Google Scholar 

  15. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Technische Hochschule Darmstadt (1962)

    Google Scholar 

  16. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering Stochastic Petri Nets with Arbitrary Delay Distributions From Event Logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 International Workshops. LNBIP, vol. 171, pp. 15–27. Springer, Heidelberg (2014)

    Google Scholar 

  17. Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving Documentation by Repairing Event Logs. In: Grabis, J., Kirikova, M. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 129–144. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  18. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Inf. Syst. 33(1), 64–95 (2008)

    CrossRef  Google Scholar 

  19. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1996)

    Google Scholar 

  20. Simpson, E.H.: The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, Series B, 238–241 (1951)

    Google Scholar 

  21. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer (2012)

    Google Scholar 

  22. Wombacher, A., Iacob, M.-E.: Estimating the Processing Time of Process Instances in Semi-structured Processes–A Case Study. In: 2012 IEEE Ninth International Conference on Services Computing (SCC), pp. 368–375. IEEE (2012)

    Google Scholar 

  23. Yeung, D.-Y., Chow, C.: Parzen-Window Network Intrusion Detectors. In: ICPR 2002, vol. 4, pp. 385–388. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rogge-Solti, A., Kasneci, G. (2014). Temporal Anomaly Detection in Business Processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds) Business Process Management. BPM 2014. Lecture Notes in Computer Science, vol 8659. Springer, Cham. https://doi.org/10.1007/978-3-319-10172-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10172-9_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10171-2

  • Online ISBN: 978-3-319-10172-9

  • eBook Packages: Computer ScienceComputer Science (R0)