Skip to main content

Application of Novel Polymeric Carrier of Plasmid DNA for Transformation of Yeast Cells

  • Chapter
  • First Online:
Book cover Genetic Transformation Systems in Fungi, Volume 1

Abstract

Genetic transformation of specific cells is a key research tool in modern basic biological studies, as well as in biotechnology and gene therapy. Here we propose a principally new method enabling easy and effective delivery of plasmid DNA into the industrially important yeast species, Hansenula polymorpha, Pichia pastoris (this chapter), and Saccharomyces cerevisiae (data not presented). The transformation method is using a novel gene delivery system based on a comb-like oligoelectrolyte polymer consisting of the anionic backbone and dimethyl aminoethyl methacrylate (DMAEM)-based side branches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17:97–103

    Article  PubMed  CAS  Google Scholar 

  • Bartel PL, Fields S (1995) Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol 254:241–263

    Article  PubMed  CAS  Google Scholar 

  • Becker DM, Guarente L (1991) High efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    Article  PubMed  CAS  Google Scholar 

  • Brzobohaty B, Kovac L (1996) Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J Gen Microbiol 132:3089–3093

    Google Scholar 

  • Butow RA, Henke RM, Moran JV, Belcher SM, Perlman PS (1996) Transformation of Saccharomyces cerevisiae mitochondria using the biolistic gun. Methods Enzymol 264:265–278

    Article  PubMed  CAS  Google Scholar 

  • Costanzo MC, Fox TD (1988) Transformation of yeast by agitation with glass beads. Genetics 120:667–670

    PubMed  CAS  PubMed Central  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  PubMed  CAS  Google Scholar 

  • Dmytruk KV, Smutok OV, Ryabova OB, Gayda GZ, Sibirny VA, Schuhmann W, Gonchar MV, Sibirny AA (2007) Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor. BMC Biotechnol 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Faber KN, Swaving GJ, Faber F, Ab G, Harder W, Veenhuis M, Haima P (1992) Chromosomal targeting of replicating plasmids in the yeast Hansenula polymorpha. J Gen Microbiol 138:2405–2416

    Article  PubMed  CAS  Google Scholar 

  • Filyak Y, Finiuk N, Mitina N, Bilyk O, Titorenko V, Hrydzhuk O, Zaichenko A, Stoika R (2013) A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers. Biotechniques 54:35–43

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2001) Genetic transformation of yeast. Biotechniques 30:816–831

    PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Ian KA, Donald G, Griffiths DE (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:57–91

    Article  Google Scholar 

  • Ito H, Murata K, Kimura A (1983a) Transformation of yeast cells treated with 2-mercaptoethanol. Agric Biol Chem 47:1691–1692

    Article  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983b) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kawakami S, Harashima S, Kobayashi A, Fukui K (2006) Transformation of yeast using bioactive beads with surface-immobilized yeast artificial chromosomes. Methods Mol Biol 349:61–65

    PubMed  CAS  Google Scholar 

  • Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341

    Article  PubMed  CAS  Google Scholar 

  • Polu AR, Kumar R (2011) Impedance spectroscopy and FTIR studies of PEG-based polymer electrolytes. E-J Chem 8:347–353

    Article  CAS  Google Scholar 

  • Razaonov DV, Strongin AY (2003) Membrane type-1 matrix metalloproteinase functions as a pro-protein self-convertase. J Biol Chem 278:8257–8260

    Article  Google Scholar 

  • Reddy A, Maley F (1993) Dithiothreitol improves the efficiency of yeast transformation. Anal Biochem 208:211–212

    Article  PubMed  CAS  Google Scholar 

  • Scharstuhl A, Glansbeek H, Vitters EL, Van der Kraan PM, Van den Berg WB (2003) Large scaleprotein production of the extracellular domain of the transforming growthfactor-type II receptor using the Pichia pastoris expression system. J Chromatogr B 786:271–277

    Article  CAS  Google Scholar 

  • Schiestl RH, Manivasakam P, Woods RA, Gietz RD (1993) Introducing DNA into yeast by transformation. Methods 5:79–85

    Article  CAS  Google Scholar 

  • Smutok O, Dmytruk K, Gonchar M, Sibirny A, Schuhmann W (2007) Permeabilized cells of flavocytochrome b 2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23:599–605

    Article  PubMed  CAS  Google Scholar 

  • Zaichenko AS, Voronov SA, Shevchuk OM, Vasilyev VP, Kuzayev AI (1997) Kinetic features and molecular weight characteristics of terpolymerization products of the systems based on vinyl acetate and 5-tert-butyl-peroxy-5-methyl-1-hexene-3-yne. J Appl Polym Sci 67:1061–1066

    Article  Google Scholar 

  • Zaichenko A, Mitina N, Kovbuz M, Artym I, Voronov S (2000) Surface-active metal-coordinated oligoperoxidic radical initiators. J Polym Sci A Polym Chem 38:516–527

    Article  CAS  Google Scholar 

  • Zaichenko A, Mitina N, Kovbuz M, Artym I, Voronov S (2001) Low-temperature surface-active complex-radical oligo(di-tert-alkyl) peroxide initiators and curing agents. Wiley-VCH 164:47–71

    CAS  Google Scholar 

  • Zhong Q, Chinta DM, Pamujula S, Wang H, Yao X, Mandal TK, Luftig RB (2010) Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes. J Nanobiotechnology 8:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zlotnik H, Fernandez MP, Bowers B, Cahib E (1984) Saccharomyces cerevisiae mannoproteins from an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the grants from the WUBMRC (Ukraine-USA), CRDF (USA), and F-46 project of the National Academy of Sciences of Ukraine, as well as by the project funded by the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostyslav Stoika Ph.D., Dr. Biol. Sci. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Filyak, Y., Finiuk, N., Mitina, N., Zaichenko, A., Stoika, R. (2015). Application of Novel Polymeric Carrier of Plasmid DNA for Transformation of Yeast Cells. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_20

Download citation

Publish with us

Policies and ethics