Skip to main content

Squirrel-Cage Solid Rotor: Leakage Circuit Loops

  • Chapter
  • First Online:
Alternating Current Multi-Circuit Electric Machines
  • 1082 Accesses

Abstract

In squirrel-cage solid rotor, leakage fields are created by eddy currents induced in the slot bars, teeth crowns, teeth and on the bottom of the rotor slots (rotor yoke region). At the strong skin effect, we assume the leakage field in the body of the solid rotor is distributed along the periphery of its teeth and bottom of the rotor slots. Therefore, a “peripheral” model can be used to describe the field distribution in squirrel-cage solid rotor. On the basis of such a model, we consider below the circuit loops of the eddy currents induced in squirrel-cage solid rotors and determine their parameters at the strong skin effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasharsky, E., Shapiro, А.: About an Impact of the Teeth on Parameters of the Turbo-Generator at the Asymmetrical Load. Collection of Papers “Theory, Calculation and Research of Highly Utilized Electric Machines. Nauka, Moskow/Leningrad (1965)

    Google Scholar 

  2. Bratolijc, T.: A contribution to the theory of the asynchronous turbo-generator with the solid rotor and series excitation. Ph.D. thesis, Technical University, Zurich-Bamberg (1968)

    Google Scholar 

  3. Gackson, W., Winchester, R.: Direct and quadrature – axis equivalent circuits for the solid – rotor turbine-generators. IEEE Trans. PAS 7, 1121–1136 (1969)

    Article  Google Scholar 

  4. Asanbayev, V.: Equivalent circuits, parameters and characteristics of large electric machines with the solid rotor. Ph.D. thesis, Academy of Science of Ukranian SSR, Institute of Elektrodynamics, Kiev (1991)

    Google Scholar 

  5. Asanbayev, V.: Equations for an AC Electric Machine with the Slotted Solid Rotor. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 260, Kiev (1981)

    Google Scholar 

  6. Asanbayev, V., Saratov, V.: Method for a Calculation of Parameters and Characteristics of Electric Machines with the Slotted Solid Rotor. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 276, Kiev (1982)

    Google Scholar 

  7. Asanbayev, V.: Calculation Model of the Slotted Solid Rotor in the Form of Layered Structure. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 505, Kiev (1987)

    Google Scholar 

  8. Asanbayev, V.: Representation of Elektromagnetic Processes in the Slotted Solid Rotor with the Use of Electric Circuits. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 506, Kiev (1987)

    Google Scholar 

  9. Asanbayev, V.: Equivalent Circuits and Parameters of the Slotted Solid Rotor for a Wide Range of a Change of the Slip. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 507, Kiev (1987)

    Google Scholar 

  10. Asanbayev, V.: Representation of the slotted solid rotor in the form of a conditional layered structure. Proc. High. Educ. Establ. Elektromech. 12, 13–17 (1988)

    Google Scholar 

  11. Asanbayev, V.: Equivalent circuit for a calculation of the current displacement in the slotted solid rotor. Proc. High. Educ. Establ. Elektromeh. 4, 26–33 (1989)

    Google Scholar 

  12. Асанбаев, В.: Determination by an Equivalent Circuit of Solid Rotor Parameters in Terms of the Current Displacement to the Periphery of the Tooth. Technicheskaya Electrodinamika, vol. 2. Naukova Dumka, Kiev (1991)

    Google Scholar 

  13. Canay, I.: Modelling alternating current machines having the multiple rotor circuits. IEEE Trans. Energy Convers. 8(2), 280–296 (1993)

    Article  Google Scholar 

  14. Brynskiy, Е., Danilevich, Ya., Yakovlev, V.: Electromagnetic Fields in Electric Machines. Energiya, Leningrad (1979)

    Google Scholar 

  15. Turovsky, Ya.: Electromagnetic Calculations of the Electric Machine Elements (Translation from Polish). Energoatomizdat, Moskow (1986)

    Google Scholar 

  16. Asanbayev, V.: Two-loop equivalent circuit parameters of the asynchronous machine rotor slot bar. Electrichestvo 6, 27–32 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix A.19 Transformations

Appendix A.19 Transformations

19.1.1 A.19.1 Expression [Z cz2(Z a  + Z τcz2)c 2 cz2 ]/[Z cz2 + (Z a  + Z τcz2)c 2 cz2 ]: Real and Imaginary Components

We consider the real and imaginary components of expression (19.70)

$$ \frac{Z_{cz2}\left({Z}_a+{Z}_{\tau cz2}\right){c}_{cz2}^2}{Z_{cz2}+\left({Z}_a+{Z}_{\tau cz2}\right){c}_{cz2}^2} $$
(A.19.1)

For this purpose, we first define the real and imaginary components of expression (Z a  + Z τcz2)c 2 cz2 used in (A.19.1). Considering the conditions given in (19.98), the value of (Z a  + Z τcz2)c 2 cz2 can be presented as

$$ \begin{array}{l}\left({Z}_a+{Z}_{\tau cz2}\right){c}_{cz2}^2=\left[\left({r}_{ca}/s+j{x}_{ca\sigma}\right)+\left({r}_{\tau cz2}/s+j{x}_{\tau cz2}\right)\right]\left({k}_{cz2r}+j{k}_{cz2x}\right)\hfill \\ {}\kern6.24em =\left[\left({r}_{ca}/s\right){k}_{cz2r}-{x}_{ca\sigma}{k}_{cz2x}+\left({r}_{\tau cz2}/s\right){k}_{cz2r}-{x}_{\tau cz2}{k}_{cz2x}\right]+j\Big[{x}_{ca\sigma}{k}_{cz2r}\hfill \\ {}\kern7.24em +\left({r}_{ca}/s\right){k}_{cz2x}\hfill \\ {}+{x}_{\tau cz2}{k}_{cz2r}+\left({r}_{\tau cz2}/s\right){k}_{cz2x}\Big]=\left[\frac{r_{ca}}{s}\left(1+\frac{r_{\tau cz2}}{r_{ca}}\right){k}_{cz2r}-{x}_{ca\sigma}\left(1+\frac{x_{\tau cz2}}{x_{ca\sigma}}\right){k}_{cz2x}\right]\hfill \\ {}\kern-.28em +j\left[{x}_{ca\sigma}\left({k}_{cz2r}+\frac{r_{ca}/s}{x_{ca\sigma}}{k}_{cz2x}\right)+{x}_{\tau cz2}\left({k}_{cz2r}+\frac{r_{\tau cz2}/s}{x_{\tau cz2}}{k}_{cz2x}\right)\right]=\frac{r_{ca}^{{\prime\prime} }}{s}+j{x}_{ca\sigma}^{{\prime\prime}}\hfill \end{array} $$
(A.19.2)

where \( \begin{array}{l}\frac{r_{ca}^{{\prime\prime} }}{s}=\left[\frac{r_{ca}}{s}\left(1+\frac{r_{\tau cz2}}{r_{ca}}\right){k}_{cz2r}-{x}_{ca\sigma}\left(1+\frac{x_{\tau cz2}}{x_{ca\sigma }}\right){k}_{cz2x}\right];\hfill \\ {}{x}_{ca\sigma}^{{\prime\prime} }={x}_{ca\sigma}\left({k}_{cz2r}+\frac{r_{ca}/s}{x_{ca\sigma }}{k}_{cz2x}\right)+{x}_{\tau cz2}\left({k}_{cz2r}+\frac{r_{\tau cz2}/s}{x_{\tau cz2}}{k}_{cz2x}\right)\hfill \end{array} \)

From (19.98), we have for the impedance Z cz2 used in (A.19.1) the condition Z cz2 = r c2/s + jx c2. Taking into account the condition Z cz2 = r c2/s + jx c2 and expression (A.19.2), we can use in (A.19.1) the following non-dimensional factors:

$$ {\alpha}_{cz2}=\frac{r_{ca}^{{\prime\prime} }}{r_{c2}};{\beta}_{cz2}=\frac{x_{c2}}{r_{c2}/s};{\gamma}_{cz2}=\frac{x_{ca\sigma}^{{\prime\prime} }}{r_{c2}/s} $$
(A.19.3)

On the basis of expressions (A.19.1), (A.19.2) and (A.19.3), it follows that

$$ \begin{array}{l}\frac{Z_{cz2}\left({Z}_a+{Z}_{\tau cz2}\right){c}_{cz2}^2}{Z_{cz2}+\left({Z}_a+{Z}_{\tau cz2}\right){c}_{cz2}^2}=\frac{\left({r}_{c2}/s+j{x}_{c2}\right)\left({r}_{ca}^{{\prime\prime} }/s+j{x}_{ca\sigma}^{{\prime\prime}}\right)}{\left({r}_{c2}/s+{r}_{ca}^{{\prime\prime} }/s\right)+j\left({x}_{c2}+j{x}_{ca\sigma}^{{\prime\prime}}\right)}\hfill \\ {}\kern9em =\frac{r_{c2}}{s}\kern0.14em \frac{\left(1+j{\beta}_{cz2}\right)\left({\alpha}_{cz2}+j{\gamma}_{cz2}\right)}{\left(1+{\alpha}_{cz2}\right)+j\left({\beta}_{cz2}+{\gamma}_{cz2}\right)}\hfill \\ {}\kern9em =\frac{r_{c2}}{s}\kern0.14em \frac{\alpha_{cz2}\left(1+{\beta}_{cz2}^2\right)+{\alpha}_{cz2}^2+{\gamma}_{cz2}^2}{{\left(1+{\alpha}_{cz2}\right)}^2+{\left({\beta}_{cz2}+{\gamma}_{cz2}\right)}^2}\hfill \\ {}\kern10em +j{x}_{c2}\frac{\left({\gamma}_{cz2}/{\beta}_{cz2}\right)\left(1+{\beta}_{cz2}^2\right)+{\alpha}_{cz2}^2+{\gamma}_{cz2}^2}{{\left(1+{\alpha}_{cz2}\right)}^2+{\left({\beta}_{cz2}+{\gamma}_{cz2}\right)}^2}\hfill \\ {}\kern9em =\frac{r_{c2}}{s}{k}_{c2r}^{{\prime\prime} }+j{x}_{c2}{k}_{c2x}^{{\prime\prime}}\hfill \end{array} $$
(A.19.4)

where \( {k}_{c2r}^{{\prime\prime} }=\frac{\alpha_{cz2}\left(1+{\beta}_{cz2}^2\right)+{\alpha}_{cz2}^2+{\gamma}_{cz2}^2}{{\left(1+{\alpha}_{cz2}\right)}^2+{\left({\beta}_{cz2}+{\gamma}_{cz2}\right)}^2};{k}_{c2x}^{{\prime\prime} }=\frac{\left({\gamma}_{cz2}/{\beta}_{cz2}\right)\left(1+{\beta}_{cz2}^2\right)+{\alpha}_{cz2}^2+{\gamma}_{cz2}^2}{{\left(1+{\alpha}_{cz2}\right)}^2+{\left({\beta}_{cz2}+{\gamma}_{cz2}\right)}^2} \).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asanbayev, V. (2015). Squirrel-Cage Solid Rotor: Leakage Circuit Loops. In: Alternating Current Multi-Circuit Electric Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-10109-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10109-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10108-8

  • Online ISBN: 978-3-319-10109-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics