Skip to main content

Modeling

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 208))

Abstract

After having discussed general principles of solar energy conversion and the elementary processes in organic solar cells, we focus on modeling and simulation in this chapter. The first part deals with drift-diffusion simulation in general including the Einstein relation. In the second part, specific models for physical processes are discussed, which range from mobility and recombination models to the description of CT states, traps, interface barriers, and a Gaussian-shaped density of states. In a third part, an optical thin-film model based on the transfer-matrix approach is described. The final part contains discussion on exemplary devices visualized by simulation results. Readers, who are not interested in the details of drift-diffusion simulation, can simply skip the technical parts. However, they are encouraged to follow the descriptions of the ideas and models, as almost all analytical approaches to understand the current-voltage relation of organic solar cells are based on special cases of these equations. In particular, this chapter should help the reader to answer the following questions: (a) Which approaches exist to model organic solar cells? (b) What are the main assumptions for a drift-diffusion model? Where are difficulties in applying it to organic solar cells? (c) What are the basic equations and input parameters? (d) Charge carrier mobility and recombination in organic semiconductors: How can they be described? Are they interrelated? (e) What is the role of the contacts—mathematically and physically? (f) Why is the Lambert-Beer law incapable of describing absorption in organic solar cells? What is coherence? (g) What is the basic idea of the transfer-matrix model? (h) What are the different working regimes of a single-carrier device?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bässler, H.: Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study. physica status solidi (b) 175 (1993), 15–56.

    Google Scholar 

  2. Strobel, T., Deibel, C., Dyakonov, V.: Role of Polaron Pair Diffusion and Surface Losses in Organic Semiconductor Devices. Physical Review Letters 105, 266602 (2010)

    Article  Google Scholar 

  3. Watkins, P.K., Walker, A.B., Verschoor, G.L.B.: Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. Nano Letters 5, 1814–1818 (2005)

    Article  Google Scholar 

  4. Nelson, J., Kwiatkowski, J.J., Kirkpatrick, J., Frost, J.M.: Modeling charge transport in organic photovoltaic materials. Accounts of Chemical Research 42, 1768–78 (2009)

    Article  Google Scholar 

  5. Marsh, R.A., Groves, C., Greenham, N.C.: A microscopic model for the behavior of nanostructured organic photovoltaic devices. Journal of Applied Physics 101, 083509 (2007)

    Article  Google Scholar 

  6. Yang, F., Forrest, S.R.: Photocurrent generation in nanostructured organic solar cells. ACS Nano 2, 1022–1032 (2008)

    Article  Google Scholar 

  7. Deibel, C.: Charge carrier dissociation and recombination in polymer solar cells. Physica Status Solidi (a) 2736, 2731–2736 (2009)

    Google Scholar 

  8. Offermans, T., Meskers, S.C.J., Janssen, R.A.J.: Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: a two-step dissociation mechanism. Chemical Physics 308, 125–133 (2005)

    Article  Google Scholar 

  9. Groves, C., Marsh, R.A., Greenham, N.C.: Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices. The Journal of Chemical Physics 129, 114903 (2008)

    Article  Google Scholar 

  10. Staudigel, J., Stössel, M., Steuber, F., Simmerer, J.: A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes. Journal of Applied Physics 86, 3895–3910 (1999)

    Article  Google Scholar 

  11. Davids, P.S., Campbell, I.H., Smith, D.L.: Device model for single carrier organic diodes. Journal of Applied Physics 82, 6319 (1997)

    Article  Google Scholar 

  12. Hwang, I., McNeill, C.R., Greenham, N.C.: Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells. Journal of Applied Physics 106, 094506 (2009)

    Article  Google Scholar 

  13. Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.M.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B 72, 085205 (2005)

    Article  Google Scholar 

  14. Barker, J., Ramsdale, C., Greenham, N.: Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices. Physical Review B 67, 075205 (2003)

    Article  Google Scholar 

  15. Glatthaar, M., Riede, M., Keegan, N., Sylvester-Hvid, K., Zimmermann, B., Niggemann, M., Hinsch, A., Gombert, A., Sylvesterhvid, K.: Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Solar Energy Materials and Solar Cells 91, 390–393 (2007)

    Article  Google Scholar 

  16. Lacic, S., Inganäs, O.: Modeling electrical transport in blend heterojunction organic solar cells. Journal of Applied Physics 97, 124901 (2005)

    Article  Google Scholar 

  17. Buxton, G.A., Clarke, N.: Computer simulation of polymer solar cells. Modelling and Simulation in Materials Science and Engineering 15, 13–26 (2007)

    Article  Google Scholar 

  18. Häusermann, R., Knapp, E., Moos, M., Reinke, N.A., Flatz, T., Ruhstaller, B.: Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis. Journal of Applied Physics 106, 104507 (2009)

    Article  Google Scholar 

  19. Jacoboni, C.: Theory of Electron Transport in Semiconductors : A Pathway from Elementary Physics to Nonequilibrium Green Functions. Springer, Berlin Heidelberg (2010)

    Book  Google Scholar 

  20. Roichman, Y., Tessler, N.: Generalized Einstein relation for disordered semiconductors - implications for device performance. Applied Physics Letters 80, 1948–1950 (2002)

    Article  Google Scholar 

  21. Harada, K., Werner, A., Pfeiffer, M., Bloom, C., Elliott, C., Leo, K.: Organic Homojunction Diodes with a High Built-in Potential: Interpretation of the Current-Voltage Characteristics by a Generalized Einstein Relation. Physical Review Letters 94, 036601 (2005)

    Article  Google Scholar 

  22. Peng, Y.-Q., Yang, J.-H., Lu, F.-P.: Generalization of Einstein relation for doped organic semiconductors. Applied Physics A 83, 305–311 (2006)

    Article  Google Scholar 

  23. Neumann, F., Genenko, Y.A., Von Seggern, H.: The Einstein relation in systems with trap-controlled transport. Journal of Applied Physics 99, 013704 (2006)

    Article  Google Scholar 

  24. Li, L., Meller, G., Kosina, H.: Einstein relation in hopping transport of organic semiconductors. Journal of Applied Physics 106, 013714 (2009)

    Article  Google Scholar 

  25. Wetzelaer, G.A.H., Koster, L.J.A., Blom, P.W.M.: Validity of the Einstein Relation in Disordered Organic Semiconductors. Physical Review Letters 107, 066605 (2011)

    Article  Google Scholar 

  26. Arkhipov, V.I., Heremans, P., Emelianova, E.V., Adriaenssens, G.J.: Space-charge-limited currents in materials with Gaussian energy distributions of localized states. Applied Physics Letters 79, 4154–4156 (2001)

    Article  Google Scholar 

  27. Pettersson, L.A.A., Roman, L.S., Inganäs, O.: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics 86, 487–496 (1999)

    Article  Google Scholar 

  28. Centurioni, E.: Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Applied Optics 44, 7532–7539 (2005)

    Article  Google Scholar 

  29. Meiss, J., Hermenau, M., Tress, W., Schuenemann, C., Selzer, F., Hummert, M., Alex, J., Lackner, G., Leo, K., Riede, M.: Tetrapropyl-tetraphenyl-diindenoperylene derivative as a green absorber for high-voltage stable organic solar cells. Physical Review B 83, 165305 (2011)

    Article  Google Scholar 

  30. Schünemann, C., Elschner, C., Levin, A.A., Levichkova, M., Leo, K., Riede, M.: Zinc phthalocyanine - influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films 519, 3939–3945 (2011)

    Article  Google Scholar 

  31. Wynands, D., Levichkova, M., Leo, K., Uhrich, C., Schwartz, G., Hildebrandt, D., Pfeiffer, M., Riede, M.: Increase in internal quantum efficiency in small molecular oligothiophene: C60 mixed heterojunction solar cells by substrate heating. Applied Physics Letters 97, 073503 (2010)

    Article  Google Scholar 

  32. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Transactions on Electron Devices 16, 64–77 (1969)

    Article  Google Scholar 

  33. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Transactions on Electron Devices 11, 455–465 (1964)

    Article  Google Scholar 

  34. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer New York Inc., 1984.

    Google Scholar 

  35. Omelchenko, Y.A., Karimabadi, H.: Self-adaptive time integration of flux-conservative equations with sources. Journal of Computational Physics 216, 179–194 (2006)

    Article  Google Scholar 

  36. Rand, B.P., Xue, J., Uchida, S., Forrest, S.R.: Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. I. Material properties. Journal of Applied Physics 98, 124902 (2005)

    Article  Google Scholar 

  37. Pai, D.M.: Transient Photoconductivity in Poly (N-vinylcarbazole). The Journal of Chemical Physics 52, 2285–2291 (1970)

    Article  Google Scholar 

  38. Gill, W.D.: Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. Journal of Applied Physics 43, 5033–5040 (1972)

    Article  Google Scholar 

  39. Debebe, S.E., Mammo, W., Yohannes, T., Tinti, F., Martelli, A., Camaioni, N.: Hole-transport properties of a low-band gap alternating polyfluorene. Journal of Applied Physics 108, 023709 (2010)

    Article  Google Scholar 

  40. Dunlap, D.H., Parris, P.E., Kenkre, V.M.: Charge-Dipole Model for the Universal Field Dependence of Mobilities in Molecularly Doped Polymers. Physical Review Letters 77, 542–545 (1996)

    Article  Google Scholar 

  41. Li, L., Van Winckel, S., Genoe, J., Heremans, P.: Electric field-dependent charge transport in organic semiconductors. Applied Physics Letters 95, 153301 (2009)

    Article  Google Scholar 

  42. Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Physical Review 54, 647–648 (1938)

    Article  Google Scholar 

  43. Widmer, J.: Temperature dependent behaviour of organic solar cells. Diplomarbeit, TU Dresden (2009)

    Google Scholar 

  44. Blom, P W M.; and Vissenberg, M C J M.: Charge transport in poly ( p-phenylene vinylene ) light-emitting diodes. Mater. Sci. Eng. R: Rep. 27 (3-4), 53-9427 (2000).

    Google Scholar 

  45. Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., Leeuw, D.M., Michels, M.A.J.: Unified Description of Charge-Carrier Mobilities in Disordered Semiconducting Polymers. Physical Review Letters 94, 206601 (2005)

    Article  Google Scholar 

  46. Pivrikas, A., Juška, G., Mozer, A.J., Scharber, M., Arlauskas, K., Sariciftci, N.S., Stubb, H., Österbacka, R.: Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. Physical Review Letters 94, 176806 (2005)

    Article  Google Scholar 

  47. Pivrikas, A., Sariciftci, N.S., Juška, G., Österbacka, R.: A review of charge transport and recombination in polymer/fullerene organic solar cells. Progress in Photovoltaics: Research and Applications 15, 677–696 (2007)

    Article  Google Scholar 

  48. Deibel, C., Baumann, A., Dyakonov, V.: Polaron recombination in pristine and annealed bulk heterojunction solar cells. Applied Physics Letters 93, 163303 (2008)

    Article  Google Scholar 

  49. P. Langevin. Recombinaison et mobilitks des ions dans les gaz. Annal. Chim. Phys. 28, 433 (1903)

    Google Scholar 

  50. Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters 88, 052104 (2006)

    Article  Google Scholar 

  51. Deibel, C., Wagenpfahl, A., Dyakonov, V.: Origin of reduced polaron recombination in organic semiconductor devices. Physical Review B 80, 075203 (2009)

    Article  Google Scholar 

  52. Groves, C., Greenham, N.: Bimolecular recombination in polymer electronic devices. Physical Review B 78, 155205 (2008)

    Article  Google Scholar 

  53. Adriaenssens, G.J., Arkhipov, V.I.: Non-Langevin recombination in disordered materials with random potential distributions. Solid State Communications 103, 541–543 (1997)

    Article  Google Scholar 

  54. Nelson, J., Choulis, S.A., Durrant, J.R.: Charge recombination in polymer/fullerene photovoltaic devices. Thin Solid Films 451, 508–514 (2004)

    Article  Google Scholar 

  55. Mandoc, M.M., Kooistra, F.B., Hummelen, J.C., Boer, B., de; and Blom, P. W. M., : Effect of traps on the performance of bulk heterojunction organic solar cells. Applied Physics Letters 91, 263505 (2007)

    Google Scholar 

  56. Kirchartz, T., Pieters, B., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene:fullerene solar cells. Phys. Rev.B 83, 115209 (2011)

    Article  Google Scholar 

  57. Street, R.A., Schoendorf, M.: Interface state recombination in organic solar cells. Physical Review B 81, 205307 (2010)

    Article  Google Scholar 

  58. Tzabari, Lior; and Tessler, Nir: Shockley-Read-Hall recombination in P3HT:PCBM solar cells as observed under ultralow light intensities. Journal of Applied Physics 109 (2011), 064501.

    Google Scholar 

  59. Onsager, L.: Initial recombination of ions. Physical. Review 54, 554–557 (1938)

    Article  Google Scholar 

  60. Braun, C.L.: Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. The Journal of Chemical Physics 80, 4157–4161 (1984)

    Article  Google Scholar 

  61. Mihailetchi, V.D., Koster, L.J.A., Hummelen, J.C., Blom, P.W.M.: Photocurrent Generation in Polymer-Fullerene Bulk Heterojunctions. Physical Review Letters 93, 216601 (2004)

    Article  Google Scholar 

  62. Hilczer, M., Tachiya, M.: Unified Theory of Geminate and Bulk Electron-Hole Recombination in Organic Solar Cells. The Journal of Physical Chemistry C 114, 6808–6813 (2010)

    Article  Google Scholar 

  63. Sze, S. M.: Physics of Semiconductor Devices, 2nd. John Wiley and Sons, 1981.

    Google Scholar 

  64. Scott, J.C., Malliaras, G.G.: Charge injection and recombination at the metal-organic interface. Chemical Physics Letters 299, 115–119 (1999)

    Article  Google Scholar 

  65. Blochwitz, J., Fritz, T., Pfeiffer, M., Leo, K.: Interface electronic structure of organic semiconductors with controlled doping levels. Organic Electronics 2, 97–104 (2001)

    Article  Google Scholar 

  66. Olthof, S., Meerheim, R., Schober, M., Leo, K.: Energy level alignment at the interfaces in a multilayer organic light-emitting diode structure. Physical Review B 79, 245308 (2009)

    Article  Google Scholar 

  67. Donges, Axel: The coherence length of black-body radiation. European Journal of Physics 19, 245–249 (1998)

    Article  Google Scholar 

  68. Mott, N. F.; and Gurney, R. W.: Electronic processes in ionic crystals. 2nd. Dover Publications Inc., 1964.

    Google Scholar 

  69. Schwoerer, M.; and Wolf, H. C.: Organic molecular solids. Wiley-VCH, 2006.

    Google Scholar 

  70. Würfel, P.: Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  71. Cole, D.A., Shallenberger, J.R., Novak, S.W., Moore, R.L., Edgell, M.J., Smith, S.P., Hitzman, C.J., Kirchhoff, J.F., Principe, E., Nieveen, W., Huang, F.K., Biswas, S., Bleiler, R.J., Jones, K.: SiO2 thickness determination by x-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry. J. Vac. Sci. & Technol. B: Microelectron. Nanometer. Struct. 18, 440–444 (2000)

    Article  Google Scholar 

  72. Djurisic, A.B., Fritz, T., Leo, K.: Determination of optical constants of thin absorbing films from normal incidence reflectance and transmittance measurements. Opt. Communications 166, 35–42 (1999)

    Article  Google Scholar 

  73. Lunt, R.R., Giebink, N.C., Belak, A.A., Benziger, J.B., Forrest, S.R.: Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. Journal of Applied Physics 105, 053711 (2009)

    Article  Google Scholar 

  74. Li, Y.; Cao, Y.; Gao, J.; Wang, D.; and Yu, G.: Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synthetic Metals (1999), 243–248.

    Google Scholar 

  75. Hüfner, S.: Photoelectron spectroscopy: principles and applications. Springer Verlag, 2003.

    Google Scholar 

  76. Ishii, H., Sugiyama, K., Ito, E., Seki, K.: Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Advanced Materials 11, 605–625 (1999)

    Article  Google Scholar 

  77. Olthof, S., Tress, W., Meerheim, R., Lüssem, B., Leo, K.: Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant. Journal of Applied Physics 106, 103711 (2009)

    Article  Google Scholar 

  78. Gao, W., Kahn, A.: Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study. Applied Physics Letters 79, 4040–4042 (2001)

    Article  Google Scholar 

  79. Zahn, D., Gavrila, G., Gorgoi, M.: The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission. Chemical Physics 325, 99–112 (2006)

    Article  Google Scholar 

  80. Nonnenmacher, M., O’Boyle, M.P., Wickramasinghe, H.K.: Kelvin probe force microscopy. Applied Physics Letters 58, 2921–2923 (1991)

    Article  Google Scholar 

  81. Kikukawa, A., Hosaka, S., Imura, R.: Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Applied Physics Letters 66, 3510–3512 (1995)

    Article  Google Scholar 

  82. Puntambekar, K.P., Pesavento, P.V., Frisbie, C.D.: Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy. Applied Physics Letters 83, 5539–5541 (2003)

    Article  Google Scholar 

  83. Hoppe, H., Glatzel, T., Niggemann, M., Hinsch, A., Lux-Steiner, M.C., Sariciftci, N.S.: Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Letters 5, 269–274 (2005)

    Article  Google Scholar 

  84. Pfeiffer, M., Beyer, A., Fritz, T., Leo, K.: Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Applied Physics Letters 73, 3202–3204 (1998)

    Article  Google Scholar 

  85. Barsoukov, E.; and MacDonald, J. R.: Impedance spectroscopy: theory, experiment, and applications. LibreDigital, 2005.

    Google Scholar 

  86. Haering, R.R., Adams, E.N.: Theory and application of thermally stimulated currents in photoconductors. Physical Review 117, 451–454 (1960)

    Article  Google Scholar 

  87. Schmechel, R., Von Seggern, H.: Electronic traps in organic transport layers. Physica Status Solidi (a) 201, 1215–1235 (2004)

    Article  Google Scholar 

  88. Campbell, I.H., Smith, D.L., Neef, C.J., Ferraris, J.P.: Consistent time-of-flight mobility measurements and polymer light-emitting diode current-voltage characteristics. Applied Physics Letters 74, 2809–2811 (1999)

    Article  Google Scholar 

  89. Berleb, S., Brütting, W.: Dispersive Electron Transport in tris(8-hydroxyquinoline) Aluminum (Alq3) Probed by Impedance Spectroscopy. Physical Review Letters 89, 286601 (2002)

    Article  Google Scholar 

  90. Tsang, S.W., So, S.K., Xu, J.B.: Application of admittance spectroscopy to evaluate carrier mobility in organic charge transport materials. Journal of Applied Physics 99, 013706 (2006)

    Article  Google Scholar 

  91. Mozer, A.J., Sariciftci, N.S., Lutsen, L., Vanderzande, D., Osterbacka, R., Westerling, M., Jusika, G.: Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Applied Physics Letters 86, 112104 (2005)

    Article  Google Scholar 

  92. Baumann, A; Lorrmann, J; Rauh, D; Deibel, C; and Dyakonov, V: A new approach for probing the mobility and lifetime of photogenerated charge carriers in organic solar cells under real operating conditions. Adv. mater. (Deerfield Beach, Fla.) 24 (2012), 4381–6.

    Google Scholar 

  93. Brown, T.M., Kim, J.S., Friend, R.H., Cacialli, F., Daik, R., Feast, W.J.: Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters 75, 1679–1681 (1999)

    Article  Google Scholar 

  94. Wehenkel, Dominique J.; Wienk, Martijn M.; Janssen, René A.J.: Probing Electric Fields in Polymer Tandem and Single Junction Cells with Electroabsorption Spectroscopy. J. Phys. Chem. C 117 (2013), 4374–4382.

    Google Scholar 

  95. Siebert-Henze, E., Lyssenko, V.G., Fischer, J., Tietze, M., Brueckner, R., Menke, T., Leo, K., Riede, M.: Electroabsorption studies of organic p-i-n solar cells: Increase of the built-in voltage by higher doping concentration in the hole transport layer. Organic Electronics 15, 563–568 (2014)

    Article  Google Scholar 

  96. McCartney, M.R., Ponce, F.A., Cai, J., Bour, D.P.: Mapping electrostatic potential across an AlGaN/InGaN/AlGaN diode by electron holography. Applied Physics Letters 76, 3055–3057 (2000)

    Article  Google Scholar 

  97. Formanek, P., Bugiel, E.: Specimen preparation for electron holography of semiconductor devices. Ultramicroscopy 106, 365–375 (2006)

    Article  Google Scholar 

  98. Vandewal, K., Goris, L., Haeldermans, I., Nesladek, M., Haenen, K., Wagner, P., Manca, J.V.: Fourier-Transform Photocurrent Spectroscopy for a fast and highly sensitive spectral characterization of organic and hybrid solar cells. Thin Solid Films 516, 7135–7138 (2008)

    Article  Google Scholar 

Further Reading

  1. Book on the simulation of semiconductor devices: Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer New York Inc., 1984

    Google Scholar 

  2. Introduction to modeling of organic optoelectronic devices: Walker, A.B., Kambili, A., Martin, S.J.: Electrical transport modelling in organic electroluminescent devices. J. Phys. Condens. Matter 14, 9825–9876 (2002)

    Google Scholar 

  3. Publication on how to build a solver for a time-dependent drift-diffusion model for OLEDs: Staudigel, J., Stössel, M., Steuber, F., Simmerer, J.: A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes. J. Appl. Phys. 86, 3895–3910 (1999)

    Google Scholar 

  4. Publication on the transfer-matrix model applied to organic solar cells: Pettersson, L.A.A., Roman, L.S., Inganäs, O.: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Tress .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tress, W. (2014). Modeling. In: Organic Solar Cells. Springer Series in Materials Science, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-10097-5_4

Download citation

Publish with us

Policies and ethics