Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 892))

Abstract

Gravity theories with non-minimally coupled scalar fields are used as characteristic examples in order to demonstrate the challenges, pitfalls and future perspectives of considering alternatives to general relativity. These lecture notes can be seen as an illustration of features, concepts and subtleties that are present in most types of alternative theories, but they also provide a brief review of generalised scalar-tensor theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, one can infer certain properties of gravity indirectly. Matter couples to gravity and we understand and probe the structure and behaviour of particles and fields at scales much smaller than the micron, so if one is given a model that describes how gravity interacts with matter then one could in principle gain insight into some aspects of gravity through the behaviour of matter. Applying this logic to the quantum aspects of gravity has given rise to what is called Quantum Gravity Phenomenology [1, 2]. The fact that the gravitational coupling is very weak poses a particular challenge in such an approach, but smoking gun signals can still exist in certain models.

  2. 2.

    Erich Kretschmann argued in 1917 that any theory can be put in a generally covariant form, which led to a famous debate with Einstein. A covariant version of Newtonian gravity can be found in [10].

  3. 3.

    If there is a potential ϕ = ϕ 0 solutions are only admissible if U (ϕ 0) = 0 as well.

  4. 4.

    The numbering of the terms in the Lagrangian, L 2 to L 5, is also a remnant of the original flat space Galileons [27]. The index indicates there the number of copies of the field in each term. In the Generalised Galileons the L i term contains i − 2 second derivatives of the scalar.

  5. 5.

    The Einstein–Hilbert action also contains second derivatives of the metric and is degenerate, thus avoiding Ostrogradski’s instability.

  6. 6.

    Hořava gravity exhibits instantaneous propagation even at low energies [50], and on general grounds one would expect the UV completion of any Lorentz violating theory to generically introduce higher order dispersion relations.

References

  1. G. Amelino-Camelia, Lect. Notes Phys. 669, 59 (2005) [gr-qc/0412136]

    Google Scholar 

  2. S. Liberati, Class. Quantum Grav. 30, 133001 (2013) [arXiv:1304.5795 [gr-qc]]

    Google Scholar 

  3. P.A.R. Ade et al. [Planck Collaboration], Astron. Astrophys. (2014)

    Google Scholar 

  4. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S.M. Carroll, Living Rev. Relat. 4, 1 (2001)

    ADS  Google Scholar 

  6. C. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993)

    Book  MATH  Google Scholar 

  7. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D. Lovelock, J. Math. Phys. 13, 874 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H. Ruegg, M. Ruiz-Altaba, Int. J. Mod. Phys. A 19, 3265 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973)

    Google Scholar 

  11. M. Ostrogradski, Mem. Ac. St. Peterbourg VI 4, 385 (1850)

    Google Scholar 

  12. R.P. Woodard, Lect. Notes Phys. 720, 403 (2007)

    Article  ADS  Google Scholar 

  13. P. Pani, T.P. Sotiriou, D. Vernieri, Phys. Rev. D 88, 121502 (2013)

    Article  ADS  Google Scholar 

  14. L. Perivolaropoulos, Phys. Rev. D 81, 047501 (2010)

    Article  ADS  Google Scholar 

  15. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  16. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  17. Y. Fujii, K. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  18. T.P. Sotiriou, V. Faraoni, S. Liberati, Int. J. Mod. Phys. D 17, 399 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. T. Damour, G. Esposito-Farese, Phys. Rev. Lett. 70, 2220 (1993)

    Article  ADS  Google Scholar 

  20. T. Damour, G. Esposito-Farese, Phys. Rev. D 54, 1474 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Khoury, A. Weltman, Phys. Rev. Lett. 93, 171104 (2004)

    Article  ADS  Google Scholar 

  22. V. Faraoni, Class. Quantum Grav. 26, 145014 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Khoury, Class. Quantum Grav. 30, 214004 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Hinterbichler, J. Khoury, Phys. Rev. Lett. 104, 231301 (2010)

    Article  ADS  Google Scholar 

  25. G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974)

    Article  MathSciNet  Google Scholar 

  26. C. Deffayet, S. Deser, G. Esposito-Farese, Phys. Rev. D 80, 064015 (2009)

    Article  ADS  Google Scholar 

  27. A. Nicolis, R. Rattazzi, E. Trincherini, Phys. Rev. D 79, 064036 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Deffayet, G. Esposito-Farese, A. Vikman, Phys. Rev. D 79, 084003 (2009)

    Article  ADS  Google Scholar 

  29. C. Deffayet, D.A. Steer, Class. Quantum Grav. 30, 214006 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. A.I. Vainshtein, Phys. Lett. B 39, 393 (1972)

    Article  ADS  Google Scholar 

  31. E. Babichev, C. Deffayet, Class. Quantum Grav. 30, 184001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. O’ Hanlon, Phys. Rev. Lett. 29, 137 (1972)

    Google Scholar 

  33. P. Teyssandier, P. Tourrenc, J. Math. Phys. 24, 2793 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. P. Hořava, Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Blas, O. Pujolas, S. Sibiryakov, Phys. Rev. Lett. 104, 181302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. T.P. Sotiriou, J. Phys. Conf. Ser. 283, 012034 (2011)

    Article  ADS  Google Scholar 

  37. T. Jacobson, D. Mattingly, Phys. Rev. D 64, 024028 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Jacobson, PoS QG -PH, 020 (2007)

    Google Scholar 

  39. T. Jacobson, Phys. Rev. D 81, 101502 (2010) [Erratum-Phys. Rev. D 82, 129901 (2010)]

    Google Scholar 

  40. S.W. Hawking, Commun. Math. Phys. 25, 167 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  41. T.P. Sotiriou, V. Faraoni, Phys. Rev. Lett. 108, 081103 (2012)

    Article  ADS  Google Scholar 

  42. E. Barausse, T.P. Sotiriou, Phys. Rev. Lett. 101, 099001 (2008)

    Article  ADS  Google Scholar 

  43. T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M.W. Horbatsch, C.P. Burgess, J. Cosmol. Astropart. Phys. 1205, 010 (2012)

    Article  ADS  Google Scholar 

  45. V. Cardoso, S. Chakrabarti, P. Pani, E. Berti, L. Gualtieri, Phys. Rev. Lett. 107, 241101 (2011)

    Article  ADS  Google Scholar 

  46. V. Cardoso, I.P. Carucci, P. Pani, T.P. Sotiriou, Phys. Rev. Lett. 111, 111101 (2013) [arXiv:1308.6587 [gr-qc]]

    Google Scholar 

  47. P. Kanti, N.E. Mavromatos, J. Rizos, K. Tamvakis, E. Winstanley, Phys. Rev. D 54, 5049 (1996) [hep-th/9511071]

    Article  ADS  MathSciNet  Google Scholar 

  48. L. Hui, A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013)

    Article  ADS  Google Scholar 

  49. T.P. Sotiriou, S.-Y. Zhou, Phys. Rev. Lett. 112, 251102 (2014)

    Article  ADS  Google Scholar 

  50. D. Blas, S. Sibiryakov, Phys. Rev. D 84, 124043 (2011)

    Article  ADS  Google Scholar 

  51. E. Barausse, T. Jacobson, T.P. Sotiriou, Phys. Rev. D 83, 124043 (2011)

    Article  ADS  Google Scholar 

  52. E. Barausse, T.P. Sotiriou, Phys. Rev. Lett. 109, 181101 (2012) [Erratum-Phys. Rev. Lett. 110, 039902 (2013)]

    Google Scholar 

  53. E. Barausse, T.P. Sotiriou, Phys. Rev. D 87, 087504 (2013)

    Article  ADS  Google Scholar 

  54. E. Barausse, T.P. Sotiriou, Class. Quantum Grav. 30, 244010 (2013) [arXiv:1307.3359 [gr-qc]]

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement n. 306425 “Challenging General Relativity”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Sotiriou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sotiriou, T.P. (2015). Gravity and Scalar Fields. In: Papantonopoulos, E. (eds) Modifications of Einstein's Theory of Gravity at Large Distances. Lecture Notes in Physics, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-10070-8_1

Download citation

Publish with us

Policies and ethics