Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8641))

Abstract

Face detection has been considered one of the most important areas of research in computer vision due to its wide range of use in human face-related applications. This paper addresses the problem of face detection using Hough transform employed within the random forests framework. The proposed Hough forests-based method is a task-adapted codebooks of local facial appearance with a randomized selection of features at each split that allow fast supervised training and fast matching at test time, where the codebooks are built upon a pool of heterogeneous local appearance features and the codebook is learned for the face appearance features that models the spatial distribution and appearance of facial parts of the human face. Experimental results are included to verify the effectiveness and feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hassaballah, M., Murakami, K., Ido, S.: Face detection evaluation: A new approach based on the golden ratio Φ. Signal, Image and Video Processing (SIViP) Journal 7(2), 307–316 (2013)

    Article  Google Scholar 

  2. Yang, M., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)

    Article  Google Scholar 

  3. Tsao, W.-K., Lee, A.J.T., Liu, Y.-H., Chang, T.-W., Lin, H.-H.: A data mining approach to face detection. Pattern Recognition 43(3), 1039–1049 (2010)

    Article  MATH  Google Scholar 

  4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision 7(2-3), 81–227 (2011)

    Article  MATH  Google Scholar 

  6. Barrett, J., Cairns, D.: Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls. Statistical Applications in Genetics and Molecular Biology 7(2), 1544–6115 (2008)

    Article  MathSciNet  Google Scholar 

  7. Moosmann, F., Nowak, E., Jurie, F.: Randomized clustering forests for image classification. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(9), 1632–1646 (2008)

    Article  Google Scholar 

  8. Chen, X., Ishwaran, H.: Random forests for genomic data analysis. Genomics 99(6), 323–329 (2012)

    Article  Google Scholar 

  9. Gall, J., Lempitsky, V.: Class-specific Hough forests for object detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1022–1029 (2009)

    Google Scholar 

  10. Gall, J., Yao, A., Razavi, N., Gool, L.-V., Lempitsky, V.: Hough forests for object detection, tracking, and action Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 33(11), 2188–2202 (2011)

    Article  Google Scholar 

  11. Barinova, O., Lempitsky, V., Kohli, P.: On detection of multiple object instances using Hough transforms. IEEE Trans. on Pattern Analysis and Machine Intelligence 34(9), 1773–1784 (2012)

    Article  Google Scholar 

  12. Hjelmas, E., Low, B.: Face detection: A survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)

    Article  MATH  Google Scholar 

  13. Tabatabaie, Z., Rahmat, R., Udzir, N.B., Kheirkhah, E.: A hybrid face detection system using combination of appearance-based and feature-based methods. International Journal of Computer Science and Network Security 9(5), 181–185 (2009)

    Google Scholar 

  14. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  15. Brubaker, S.C., Wu, J., Sun, J., Mullin, M., Rehg, J.: On the design of cascades of boosted ensembles for face detection. International Journal of Computer Vision 77(1-3), 65–86 (2008)

    Article  Google Scholar 

  16. Xiaohua, L., Lam, K.-M., Lansun, S., Jiliu, Z.: Face detection using simplified Gabor features and hierarchical regions in a cascade of classifiers. Pattern Recognition Letters 30(8), 717–728 (2009)

    Article  Google Scholar 

  17. Li, S., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  18. Chen, J.-C., James Lien, J.-J.: A view-based statistical system for multi-view face detection and pose estimation. Image and Vision Computing 27(9), 1252–1271 (2009)

    Article  Google Scholar 

  19. Yang, M., Crenshaw, J., Augustine, B., Mareachen, R., Wu, Y.: Adaboost based face detection for embedded systems. Computer Vision and Image Understanding 114(11), 1116–1125 (2010)

    Article  Google Scholar 

  20. Hamouz, M., Kittler, J., Kamarainen, J.-K., Paalanen, P., Kälviäinen, H., Matas, J.: Feature-based affine-invariant localization of faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(9), 1490–1495 (2005)

    Article  Google Scholar 

  21. Parzen, E.: On estimation of a probability density function and mode. Annals of Math. Statistics 33(3), 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  23. Schneiderman, H., Kanade, T.: A statistical method for 3D object detection applied to faces and cars. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 741–751 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hassaballah, M., Ahmed, M. (2014). A Random Decision Forests Approach to Face Detection. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics