Density Functional Theory Applied on Confined Many-Electron Atoms

Chapter

Abstract

ln this report, Thomas-Fermi and Kohn-Sham models are used to study the electronic structure of confined atoms. The Slater and Krutter method is reviewed and it is applied on a modification of the Thomas-Fermi model, where the cusp condition is satisfied. By analyzing the equation involved in this discussion, it is found that in the Thomas-Fermi model a neutral atom cannot be confined in a sphere, of arbitrary radius, where the electron density is cancelled. By the side of the Kohn-Sham method, several exchange-correlation functionals were applied on atoms confined by rigid walls. It was found that the highest occupied molecular orbital, obtained by the considered exchange-correlation functionals, show large discrepancies with regard to those values obtained by the Hartree-Fock method, even for confinements where the asymptotic region is not relevant. Additionally, we found important differences, for the correlation energy, between the correlation functionals used and a wave function obtained by a Hylleraas wave functions expansion for two-electron system. Thus, we pointed out some relevant issues that must be addressed in the near future by the Kohn-Sham method applied to confined atoms.

Notes

Acknowledgments

This work has been supported by CONACYT, México, through the projects 154784, 155698 and 155070. The authors thank the facilities provided by the Laboratorio de Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa.

References

  1. 1.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Engel E, Dreizler RM (2011) Density functional theory: an advanced course (theoretical and mathematical physics). Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Degroot SR, Tenseldam CA (1946) Physica 12:669CrossRefGoogle Scholar
  5. 5.
    Jaskolski W (1996) Phys Rep—Rev Sect Phys Lett 271:1Google Scholar
  6. 6.
    Michels A, De Boer J, Bijl A (1937) Physica 4:14Google Scholar
  7. 7.
    Sommerfeld A, Welker H (1938) Annalen Der Physik 32:56CrossRefGoogle Scholar
  8. 8.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  9. 9.
    Fermi E (1928) Zeitschrift Fur Physik 48:73CrossRefGoogle Scholar
  10. 10.
    Thomas LH (1927) Proceedings of the Cambridge Philosophical Society 23:542CrossRefGoogle Scholar
  11. 11.
    Kohn W, Sham LJ (1965) Phys Rev 140:1133CrossRefGoogle Scholar
  12. 12.
    Slater JC, Krutter HM (1935) Phys Rev 47:559CrossRefGoogle Scholar
  13. 13.
    Abrahams AM, Shapiro SL (1990) Phys Rev A 42:2530CrossRefGoogle Scholar
  14. 14.
    Parr RG, Ghosh SK (1986) Proc Nat Acad Sci U S A 83:3577CrossRefGoogle Scholar
  15. 15.
    Kato T (1957) Commun Pure Appl Math 10:151CrossRefGoogle Scholar
  16. 16.
    Feynman RP, Metropolis N, Teller E (1949) Phys Rev 75:1561CrossRefGoogle Scholar
  17. 17.
    Díaz-García C, Cruz SA (2008) Int J Quantum Chem 108:1572CrossRefGoogle Scholar
  18. 18.
    Cruz SA (2009) Advances in quantum chemistry, vol 57. Elsevier Academic Press Inc, San Diego, p 255Google Scholar
  19. 19.
    Boeyens JCA (1994) J Chem Soc-Faraday Trans 90:3377CrossRefGoogle Scholar
  20. 20.
    Sarkar U, Giri S, Chattaraj PK (2009) J Phys Chem A 113:10759CrossRefGoogle Scholar
  21. 21.
    Garza J, Vargas R, Vela A (1998) Phys Rev E 58:3949CrossRefGoogle Scholar
  22. 22.
    Ekstrom U, Visscher L, Bast R, Thorvaldsen AJ, Ruud K (2010) J Chem Theory Comput 1971:6CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  25. 25.
    Sen KD, Garza J, Vargas R, Vela A (2014) Proc Indian Natn Sci Acad 70A, 675Google Scholar
  26. 26.
    Guerra D, Vargas R, Fuentealba P, Garza J (2009) Advances in quantum chemistry, vol 58. Elsevier Academic Press Inc, San Diego, p 1Google Scholar
  27. 27.
    Koopmans T (1934) Physica 1:104CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691CrossRefGoogle Scholar
  29. 29.
    Díaz-García C, Cruz SA (2006) Phys Lett A 353:332CrossRefGoogle Scholar
  30. 30.
    Ludeña EV (1978) J Chem Phys 69:1770CrossRefGoogle Scholar
  31. 31.
    Garza J, Hernández-Pérez JM, Ramírez JZ, Vargas R (2012) J Phys B-At Mol Opt Phys 45:015002Google Scholar
  32. 32.
    Clementi E, Roetti C (1974) At Data Nucl Data Tables 14:301CrossRefGoogle Scholar
  33. 33.
    Bunge CF, Barrientos JA, Bunge AV, Cogordan JA (1992) Phys Rev A 46:3691CrossRefGoogle Scholar
  34. 34.
    Koga T, Tatewaki H, Thakkar AJ (1994) Theoretica Chimica Acta 88:273CrossRefGoogle Scholar
  35. 35.
    Sansonetti JE, Martin WC (2005) J Phys Chem Ref Data 34:1559CrossRefGoogle Scholar
  36. 36.
    Garza J, Vargas R (2009) Advances in quantum chemistry, vol 57. Elsevier Academic Press Inc, San Diego, p 241Google Scholar
  37. 37.
    Handy NC, Cohen AJ (2001) Mol Phys 99:403CrossRefGoogle Scholar
  38. 38.
    Sen KD, Garza J, Vargas R, Vela A (2000) Chem Phys Lett 325:29CrossRefGoogle Scholar
  39. 39.
    Garza J, Nichols JA, Dixon DA (2000) J Chem Phys 112:1150CrossRefGoogle Scholar
  40. 40.
    Garza J, Vargas R, Nichols JA, Dixon DA (2001) J Chem Phys 114:639CrossRefGoogle Scholar
  41. 41.
    Vonniessen W, Schirmer J, Cederbaum LS (1984) Comput Phys Rep 1:57CrossRefGoogle Scholar
  42. 42.
    Ortiz JV (1999) Adv Quantum Chem 35:33CrossRefGoogle Scholar
  43. 43.
    Linderberg J, Öhrn Y (2004) Propagators in quantum chemistry, 2nd edn. Wiley-Interscience, New JerseyCrossRefGoogle Scholar
  44. 44.
    Garza J, Vargas R, Vela A, Sen KD (2000) J Mol Struc Theochem 501:183CrossRefGoogle Scholar
  45. 45.
    Navarrete-López AM, Garza J, Vargas R (2008) J Chem Phys, 128:104110Google Scholar
  46. 46.
    Ludeña EV, Gregori M (1979) J Chem Phys 71:2235CrossRefGoogle Scholar
  47. 47.
    Aquino N, Garza J, Flores-Riveros A, Rivas-Silva JF, Sen KD (2006) J Chem Phys 124:8CrossRefGoogle Scholar
  48. 48.
    Flores-Riveros A, Rodríguez-Contreras A (2008) Phys Lett A 372:6175CrossRefGoogle Scholar
  49. 49.
    Gimarc BM (1967) J Chem Phys 47:5110CrossRefGoogle Scholar
  50. 50.
    Rivelino R, Vianna JDM (2001) J Phys B-At Mol Opt. Physics 34:L645Google Scholar
  51. 51.
    Wilson CL, Montgomery HE, Sen KD, Thompson DC (2010) Phys Lett A 374:4415CrossRefGoogle Scholar
  52. 52.
    Le Sech C, Banerjee A (2011) J Phys B-At Mol Opt. Physics 44:9Google Scholar
  53. 53.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  54. 54.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  55. 55.
    Sarsa A, Le Sech C (2011) J Chem Theory Comput 7:2786CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMéxico, D.F.México

Personalised recommendations