Advertisement

Strictly Localised Molecular Orbitals in QM/MM Methods

  • György G. FerenczyEmail author
  • Gábor Náray-Szabó
Chapter
  • 1.1k Downloads

Abstract

Strictly localised molecular orbitals (SLMOs) describe molecular electronic structures in an intuitive way but with a limited accuracy. They proved to be useful in approximate methods among them in mixed QM/QM and QM/MM ones. They are appropriate to describe the effect of the environment to a central subsystem and to separate the subsystems. SLMOs appearing at the QM-MM boundary have the advantage that they allow a straightforward separation of the subsystems. Their application with semiempirical wave-functions is well established but their use with ab initio wave-functions requires the proper treatment of the overlap between the fixed SLMOs and the molecular orbitals of the QM subsystem. Methods using SLMOs to separate subsystems are reviewed and our recently proposed schemes to calculate either orthogonal or overlapping molecular orbitals interacting with fixed SLMOs are discussed in detail. Results of model calculations are presented to illustrate the performance of these new computational schemes.

Keywords

Molecular Orbital Effective Charge Localise Orbital Active Orbital Boundary Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199CrossRefGoogle Scholar
  2. 2.
    Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198–1229CrossRefGoogle Scholar
  3. 3.
    Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904–6914CrossRefGoogle Scholar
  4. 4.
    Yang W (1991) Phys Rev Lett 66:1438–1441CrossRefGoogle Scholar
  5. 5.
    Yang W, Lee T-S (1995) J Chem Phys 103:5674–5678CrossRefGoogle Scholar
  6. 6.
    He X, Merz KM (2010) J Chem Theory Comput 6:405–411CrossRefGoogle Scholar
  7. 7.
    Wesołowski TA, Warshel A (1993) J Phys Chem 97:8050–8053CrossRefGoogle Scholar
  8. 8.
    Wesołowski TA (2008) Phys Rev A77:012504CrossRefGoogle Scholar
  9. 9.
    Reuter N, Dejaegere A, Maigret B, Karplus M (2000) J Phys Chem A 104:1720–1735CrossRefGoogle Scholar
  10. 10.
    Antes I, Thiel W (1999) J Phys Chem A 103:9290–9295CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Lee T-S, Yang W (1999) J Chem Phys 110:46–54CrossRefGoogle Scholar
  12. 12.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249CrossRefGoogle Scholar
  13. 13.
    Náray-Szabó G, Surján P (1983) Chem Phys Lett 96:499–501CrossRefGoogle Scholar
  14. 14.
    Ferenczy GG, Rivail J-L, Surján PR, Náray-Szabó G (1992) J Comput Chem 13:830–837CrossRefGoogle Scholar
  15. 15.
    Assfeld X, Rivail JL (1996) Chem Phys Lett 263:100–106CrossRefGoogle Scholar
  16. 16.
    Ferré N, Assfeld X, Rivail J-L (2002) J Comput Chem 23:610–624CrossRefGoogle Scholar
  17. 17.
    Philipp DM, Friesner RA (1999) J Comput Chem 20:1468–1494CrossRefGoogle Scholar
  18. 18.
    Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442–1457CrossRefGoogle Scholar
  19. 19.
    Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem 102:4714–4721CrossRefGoogle Scholar
  20. 20.
    Pu J, Gao J, Truhlar DG (2004) J Phys Chem A 108:632–650CrossRefGoogle Scholar
  21. 21.
    Jung J, Choi CH, Sugita Y, Ten-no S (2007) J Chem Phys 127:204102CrossRefGoogle Scholar
  22. 22.
    Jung J, Sugita Y, Ten-no S (2010) J Chem Phys 132:084106CrossRefGoogle Scholar
  23. 23.
    Kitagawa Y, Akinaga Y, Kawashime Y, Jung J, Ten-no S (2012) Chem Phys 401:95–102CrossRefGoogle Scholar
  24. 24.
    Roothaan CCJ (1951) Rev Mod Phys 23:69–89CrossRefGoogle Scholar
  25. 25.
    Adams WH (1961) J Chem Phys 34:89–102CrossRefGoogle Scholar
  26. 26.
    Adams WH (1962) J Chem Phys 37:2009–2018CrossRefGoogle Scholar
  27. 27.
    Adams WH (1965) J Chem Phys 42:4030–4038CrossRefGoogle Scholar
  28. 28.
    Gilbert TL (1964) In: Löwdin P-O, Pullman B (eds) Molecular orbitals in chemistry, physics and biology. Academic Press, New York, p 409Google Scholar
  29. 29.
    Ferenczy GG (1995) Int J Quant Chem 53:485CrossRefGoogle Scholar
  30. 30.
    Ferenczy GG (1996) Int J Quant Chem: Quant Chem. Symp 57: 361Google Scholar
  31. 31.
    Tchougréeff AL (1999) Phys Chem Chem Phys 1:1051–1060CrossRefGoogle Scholar
  32. 32.
    Ángyán JG (2000) Theor Chem Acc 103:238–241CrossRefGoogle Scholar
  33. 33.
    Tokmachev AM, Dronskowski R (2006) J Comput Chem 27:296–308CrossRefGoogle Scholar
  34. 34.
    Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Löwdin PO (1950) J Chem Phys 18:365–375CrossRefGoogle Scholar
  36. 36.
    Náray-Szabó G, Ferenczy GG (1992) J Mol Struct (Theochem) 261:55CrossRefGoogle Scholar
  37. 37.
    Náray-Szabó G, Tóth G, Ferenczy GG, Csonka G, (1994) Int J Quant Chem: Quant Biol. Symp 21: 227Google Scholar
  38. 38.
    Ferenczy GG, Náray-Szabó G, Várnai P (1999) Int J Quant Chem 75:215CrossRefGoogle Scholar
  39. 39.
    Théry V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994) J Comput Chem 15:269CrossRefGoogle Scholar
  40. 40.
    Pu J, Gao J, Truhlar DG (2004) J Phys Chem A 108:632–650CrossRefGoogle Scholar
  41. 41.
    Huzinaga A, Cantu AA (1971) J Chem Phys 55:5543CrossRefGoogle Scholar
  42. 42.
    Ferenczy GG (2013) J Comput Chem 34:854–861CrossRefGoogle Scholar
  43. 43.
    Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comput Chem 8:256–264CrossRefGoogle Scholar
  44. 44.
    Pipek J, Mezey PG (1989) J Chem Phys 90:4916–4926CrossRefGoogle Scholar
  45. 45.
    Ferenczy GG (1991) J Comput Chem 12:913CrossRefGoogle Scholar
  46. 46.
    Ferenczy GG, Winn PJ, Reynolds CA (1997) J Phys Chem A 101:5446CrossRefGoogle Scholar
  47. 47.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 111:5179–5197CrossRefGoogle Scholar
  48. 48.
    Philipp DM, Friesner RA (1999) J Comput Chem 20:1468–1494CrossRefGoogle Scholar
  49. 49.
    Ferré N, Assfeld X, Rivail J-L (2002) J Comput Chem 23:610–624CrossRefGoogle Scholar
  50. 50.
    Lin H, Truhlar DG (2005) J Phys Chem A 109:3991–4004CrossRefGoogle Scholar
  51. 51.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  52. 52.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  53. 53.
    Stone AJ (2005) J Chem Theory Comput 1:1128–1132CrossRefGoogle Scholar
  54. 54.
    Ferenczy GG, Reynolds CA, Winn PJ, Stone AJ Mulfit: http://www-stone.ch.cam.ac.uk/programs/gdma.html
  55. 55.
    Ferenczy GG, Adams WH (2009) J Chem Phys 130:134108CrossRefGoogle Scholar
  56. 56.
    Ferenczy GG (2013) J Comput Chem 34:862–869CrossRefGoogle Scholar
  57. 57.
    Stoll H, Wagenblast G, Preuss H (1980) Theor Chim Acta 57:169–178CrossRefGoogle Scholar
  58. 58.
    Gianinetti E, Raimondi M, Tornaghi E (1996) Int J Quant Chem 60:157–166CrossRefGoogle Scholar
  59. 59.
    Sironi M, Famulari A (2000) Theor Chem Acc 103:417–422CrossRefGoogle Scholar
  60. 60.
    Fornili A, Sironi M, Raimondi M (2003) J Mol Struct (Theochem) 632:157–172CrossRefGoogle Scholar
  61. 61.
    Fornili A, Moreau Y, Sironi M, Assfeld X (2006) J Comput Chem 27:515–523CrossRefGoogle Scholar
  62. 62.
    Smits GF, Altona C (1985) Theor Chem Acc 67:461–475CrossRefGoogle Scholar
  63. 63.
    Couty M, Bayse CA, Hall MB (1997) Theor Chem Acc 97:96–109CrossRefGoogle Scholar
  64. 64.
    Stone AJ (1981) Chem Phys Lett 83:233–239CrossRefGoogle Scholar
  65. 65.
    Stone AJ, Price SL (1988) J Phys Chem 92:3325–3335CrossRefGoogle Scholar
  66. 66.
    Lee T-S, Yang W (1998) Int J Quantum Chem 69:397–404CrossRefGoogle Scholar
  67. 67.
    Hong G, Strajbl M, Wesolowski TA, Warshel A (2000) J Comput Chem 21:1554–1561CrossRefGoogle Scholar
  68. 68.
    Wesołowski TA, Warshel A (1993) J Phys Chem 97:8050–8053CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Research Centre for Natural Sciences of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
  3. 3.Laboratory of Structural Chemistry and Biology, Institute of ChemistryEötvös Loránd UniversityBudapestHungary

Personalised recommendations