Architecture Strategies for Cyber-Foraging: Preliminary Results from a Systematic Literature Review

  • Grace A. Lewis
  • Patricia Lago
  • Giuseppe Procaccianti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8627)


Mobile devices have become for many the preferred way of interacting with the Internet, social media and the enterprise. However, mobile devices still do not have the computing power and battery life that will allow them to perform effectively over long periods of time or for executing applications that require extensive communication or computation, or low latency. Cyber-foraging is a technique to enable mobile devices to extend their computing power and storage by offloading computation or data to more powerful servers located in the cloud or in single-hop proximity. This paper presents the preliminary results of a systematic literature review (SLR) on architectures that support cyber-foraging. The preliminary results show that this is an area with many opportunities for research that will enable cyber-foraging solutions to become widely adopted as a way to support the mobile applications of the present and the future.


Mobile Device Cloud Computing Cloud Server Systematic Literature Review Pervasive Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dyba, T., Dingsoyr, T., Hanssen, G.: Applying systematic reviews to diverse study types: An experience report. In: First International Symposium on Empirical Software Engineering and Measurement, ESEM 2007, pp. 225–234 (September 2007)Google Scholar
  2. 2.
    Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Keele University and Durham University Joint Report, Tech. Rep. EBSE 2007-001 (2007)Google Scholar
  3. 3.
    Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consumption in mobile phones: A measurement study and implications for network applications. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, IMC 2009, pp. 280–293. ACM, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Ahnn, J., Potkonjak, M.: Toward energy-efficient and distributed mobile health monitoring using parallel offloading. Journal of Medical Systems 37(5), 1–11 (2013)CrossRefGoogle Scholar
  5. 5.
    Angin, P., Bhargava, B.: An agent-based optimization framework for mobile-cloud computing. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA) 4, 1–17 (2013)Google Scholar
  6. 6.
    Aucinas, A., Crowcroft, J., Hui, P.: Energy efficient mobile m2m communications. In: Proceedings of ExtremeCom 2012 (2012)Google Scholar
  7. 7.
    Balan, R.K., Gergle, D., Satyanarayanan, M., Herbsleb, J.: Simplifying cyber foraging for mobile devices. In: Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, MobiSys 2007, pp. 272–285. ACM, New York (2007)Google Scholar
  8. 8.
    Chang, Y.-S., Hung, S.-H.: Developing collaborative applications with mobile cloud-a case study of speech recognition. Journal of Internet Services and Information Security (JISIS) 1(1), 18–36 (2011)MathSciNetGoogle Scholar
  9. 9.
    Chen, G., Kang, B.-T., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Chandramouli, R.: Studying energy trade offs in offloading computation/compilation in java-enabled mobile devices. IEEE Transactions on Parallel and Distributed Systems 15(9), 795–809 (2004)CrossRefGoogle Scholar
  10. 10.
    Cheng, B., Probst, M.: Hbb-next i d4.4.1: Intermediate middleware software components for cloud service offloading. HBB-NEXT Consortium 2013, Tech. Rep. (2013)Google Scholar
  11. 11.
    Chu, H.-H., Song, H., Wong, C., Kurakake, S., Katagiri, M.: Roam, a seamless application framework. Journal of Systems and Software 69(3), 209–226 (2004)CrossRefGoogle Scholar
  12. 12.
    Chun, B.G., Maniatis, P.: Augmented smartphone applications through clone cloud execution. In: Proceedings of the 12th Conference on Hot Topics in Operating Systems, p. 8. USENIX Association (2009)Google Scholar
  13. 13.
    Cuervo, E.: Enhancing mobile devices through code offload. Ph.D. dissertation, Duke University (2012)Google Scholar
  14. 14.
    Duga, N.: Optimality analysis and middleware design for heterogeneous cloud hpc in mobile devices. Master’s thesis. Addis Ababa University (2011)Google Scholar
  15. 15.
    Endt, H., Weckemann, K.: Remote utilization of opencl for flexible computation offloading using embedded ecus, ce devices and cloud servers. In: Applications, Tools and Techniques on the Road to Exascale Computing. Advances in Parallel Computing, vol. 22, pp. 133–140. IOS Press EBooks (2011)Google Scholar
  16. 16.
    Esteves, R.G., McCool, M.D., Lemieux, C.: Real options for mobile communication management. In: 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1241–1246. IEEE (2011)Google Scholar
  17. 17.
    Fjellheim, T., Milliner, S., Dumas, M.: Middleware support for mobile applications. International Journal of Pervasive Computing and Communications 1(2), 75–88 (2005)CrossRefGoogle Scholar
  18. 18.
    Flinn, J., Park, S., Satyanarayanan, M.: Balancing performance, energy, and quality in pervasive computing. In: Proceedings of the 22nd International Conference on Distributed Computing Systems, pp. 217–226 (2002)Google Scholar
  19. 19.
    Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the cloud: Enabling mobile phones as interfaces to cloud applications. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Goyal, S.: A collective approach to harness idle resources of end nodes. Ph.D. dissertation, School of Computing, University of Utah (2011)Google Scholar
  21. 21.
    Guan, T.: A system architecture to provide enhanced grid access for mobile devices. Ph.D. dissertation, University of Southampton (2008)Google Scholar
  22. 22.
    Ha, K., Lewis, G., Simanta, S., Satyanarayanan, M.: Cloud offload in hostile environments. Carnegie Mellon University, Tech. Rep. (2011)Google Scholar
  23. 23.
    Hung, S.-H., Shieh, J.-P., Lee, C.-P.: Migrating android applications to the cloud. International Journal of Grid and High Performance Computing (IJGHPC) 3(2), 14–28 (2011)CrossRefGoogle Scholar
  24. 24.
    Imai, S.: Task offloading between smartphones and distributed computational resources. Master’s thesis, Rensselaer Polytechnic Institute (2012)Google Scholar
  25. 25.
    Iyer, A.N., et al.: Extending android application programming framework for seamless cloud integration. In: 2012 IEEE First International Conference on Mobile Services (MS), pp. 96–104. IEEE (2012)Google Scholar
  26. 26.
    Jarabek, C., Barrera, D., Aycock, J.: Thinav: truly lightweight mobile cloud-based anti-malware. In: Proceedings of the 28th Annual Computer Security Applications Conference, pp. 209–218. ACM (2012)Google Scholar
  27. 27.
    Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: A computation offloading framework for smartphones. In: Gris, M., Yang, G. (eds.) MobiCASE 2010. LNICST, vol. 76, pp. 59–79. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: 2012 Proceedings IEEE INFOCOM, pp. 945–953. IEEE (2012)Google Scholar
  29. 29.
    Kovachev, D., Klamma, R.: Framework for computation offloading in mobile cloud computing. International Journal of Interactive Multimedia and Artificial Intelligence 1(7), 6–15 (2012)CrossRefGoogle Scholar
  30. 30.
    Kristensen, M.D.: Empowering mobile devices through cyber foraging. Ph.D. dissertation, Aarhus University (2010)Google Scholar
  31. 31.
    Kwon, Y.-W., Tilevich, E.: Reducing the energy consumption of mobile applications behind the scenes. In: Proceedings of the 29th IEEE International Conference on Software Maintenance, ICSM 2013 (2013)Google Scholar
  32. 32.
    Lee, B.-D.: A framework for seamless execution of mobile applications in the cloud. In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H. (eds.) Recent Advances in CSIE 2011. Lecture Notes in Electrical Engineering, vol. 126, pp. 145–154. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Matthews, J., Chang, M., Feng, Z., Srinivas, R., Gerla, M.: Powersense: power aware dengue diagnosis on mobile phones. In: Proceedings of the First ACM Workshop on Mobile Systems, Applications, and Services for Healthcare, p. 6. ACM (2011)Google Scholar
  34. 34.
    Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D., Giuli, T., Gu, X.: Towards a distributed platform for resource-constrained devices. In: Proceedings of the 22nd International Conference on Distributed Computing Systems, pp. 43–51. IEEE (2002)Google Scholar
  35. 35.
    Messinger, D., Lewis, G.A.: Application virtualizaton as a strategy for cyber foraging in resource-constrained environments. Carnegie Mellon Software Engineering Institute, Tech. Rep. (2013)Google Scholar
  36. 36.
    Mohapatra, S., Venkatasubramanian, N.: Optimizing power using a reconfigurable middleware. UC Irvine, Tech. Rep. (2003)Google Scholar
  37. 37.
    Ok, M., Seo, J.-W., Park, M.-S.: A distributed resource furnishing to offload resource-constrained devices in cyber foraging toward pervasive computing. In: Enokido, T., Barolli, L., Takizawa, M. (eds.) NBiS 2007. LNCS, vol. 4658, pp. 416–425. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    O’Sullivan, M.J., Grigoras, D.: The cloud personal assistant for providing services to mobile clients. In: 2013 IEEE 7th International Symposium on Service Oriented System Engineering (SOSE), pp. 478–485 (2013)Google Scholar
  39. 39.
    Park, S., Choi, Y., Chen, Q., Yeom, H.: Some: Selective offloading for a mobile computing environment. In: 2012 IEEE International Conference on Cluster Computing (CLUSTER), pp. 588–591 (2012)Google Scholar
  40. 40.
    Pu, L., Xu, J., Jin, X., Zhang, J.: Smartvirtcloud: virtual cloud assisted application offloading execution at mobile devices’ discretion. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC): Services and Applications (2013)Google Scholar
  41. 41.
    Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa: enabling interactive perception applications on mobile devices. In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, MobiSys 2011, pp. 43–56. ACM, New York (2011)Google Scholar
  42. 42.
    Rachuri, K.K.: Smartphones based social sensing: Adaptive sampling, sensing and computation offloading. Ph.D. dissertation, University of Cambridge (2012)Google Scholar
  43. 43.
    Rahimi, M.R., Venkatasubramanian, N., Mehrotra, S., Vasilakos, A.V.: Mapcloud: mobile applications on an elastic and scalable 2-tier cloud architecture. In: Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing, pp. 83–90. IEEE Computer Society (2012)Google Scholar
  44. 44.
    Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)CrossRefGoogle Scholar
  45. 45.
    Shi, C., Pandurangan, P., Ni, K., Yang, J., Ammar, M., Naik, M., Zegura, E.: Ic-cloud: Computation offloading to an intermittently-connected cloud. Georgia Institute of Technology, Tech. Rep. (2013)Google Scholar
  46. 46.
    Silva, J.N., Veiga, L., Ferreira, P.: Spade: scheduler for parallel and distributed execution from mobile devices. In: Proceedings of the 6th International Workshop on Middleware for Pervasive and Ad-hoc Computing, pp. 25–30. ACM (2008)Google Scholar
  47. 47.
    Su, Y.-Y., Flinn, J.: Slingshot: deploying stateful services in wireless hotspots. In: Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, MobiSys 2005, pp. 79–92. ACM, New York (2005)Google Scholar
  48. 48.
    Yang, K., Ou, S., Chen, H.-H.: On effective offloading services for resource-constrained mobile devices running heavier mobile internet applications. IEEE Communications Magazine 46(1), 56–63 (2008)CrossRefGoogle Scholar
  49. 49.
    Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., Chan, A.: A framework for partitioning and execution of data stream applications in mobile cloud computing. ACM SIGMETRICS Performance Evaluation Review 40(4), 23–32 (2013)CrossRefGoogle Scholar
  50. 50.
    Zhang, Y., Guan, X.-T., Huang, T., Cheng, X.: A heterogeneous auto-offloading framework based on web browser for resource-constrained devices. In: Fourth International Conference on Internet and Web Applications and Services, ICIW 2009, pp. 193–199. IEEE (2009)Google Scholar
  51. 51.
    Zhang, X., Kunjithapatham, A., Jeong, S., Gibbs, S.: Towards an elastic application model for augmenting the computing capabilities of mobile devices with cloud computing. Mobile Networks and Applications 16(3), 270–284 (2011)CrossRefGoogle Scholar
  52. 52.
    Zhang, Y., Huang, G., Zhang, W., Liu, X., Mei, H.: Towards module-based automatic partitioning of java applications. Frontiers of Computer Science 6(6), 725–740 (2012)MathSciNetGoogle Scholar
  53. 53.
    Zhang, X., Jeon, W., Gibbs, S., Kunjithapatham, A.: Elastic HTML5: Workload offloading using cloud-based web workers and storages for mobile devices. In: Gris, M., Yang, G. (eds.) MobiCASE 2010. LNICST, vol. 76, pp. 373–381. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  54. 54.
    Armstrong, T., Trescases, O., Amza, C., de Lara, E.: Efficient and transparent dynamic content updates for mobile clients. In: Proceedings of the 4th International Conference on Mobile Systems, Applications and Services, pp. 56–68. ACM (2006)Google Scholar
  55. 55.
    Bahrami, A., Wang, C., Yuan, J., Hunt, A.: The workflow based architecture for mobile information access in occasionally connected computing. In: IEEE International Conference on Services Computing, SCC 2006, pp. 406–413. IEEE (2006)Google Scholar
  56. 56.
    Flinn, J., Sinnamohideen, S., Tolia, N., Satyanarayanan, M.: Data staging on untrusted surrogates. In: Proceedings 2nd USENIX Conference on File and Storage Technologies (FAST 2003), San Francisco, CA, March 31-April 2 (2003)Google Scholar
  57. 57.
    Kundu, S., Mukherjee, J., Majumdar, A.K., Majumdar, B., Sekhar Ray, S.: Algorithms and heuristics for efficient medical information display in pda. Computers in Biology and Medicine 37(9), 1272–1282 (2007)CrossRefGoogle Scholar
  58. 58.
    Phokas, T., Efstathiades, H., Pallis, G., Dikaiakos, M.D.: Feel the world: A mobile framework for participatory sensing. In: Daniel, F., Papadopoulos, G.A., Thiran, P. (eds.) MobiWIS 2013. LNCS, vol. 8093, pp. 143–156. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  59. 59.
    Xiao, Y., Simoens, P., Pillai, P., Ha, K., Satyanarayanan, M.: Lowering the barriers to large-scale mobile crowdsensing. In: Mobile Computing Systems and Applications (2013)Google Scholar
  60. 60.
    Yang, F., Qian, Z., Chen, X., Beschastnikh, I., Zhuang, L., Zhou, L., Shen, J.: Sonora: A platform for continuous mobile-cloud computing. Technical Report. Microsoft Research Asia, Tech. Rep. (2012)Google Scholar
  61. 61.
    Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: Can offloading computation save energy? Computer 43(4), 51–56 (2010)CrossRefGoogle Scholar
  62. 62.
    Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R.: Cloud-based augmentation for mobile devices: Motivation, taxonomies, and open challenges. IEEE Communications Surveys Tutorials 16(1), 337–368 (2014)CrossRefGoogle Scholar
  63. 63.
    Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wireless Communications and Mobile Computing 13, 1587–1611 (2011)CrossRefGoogle Scholar
  64. 64.
    Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: A survey. Future Generation Computer Systems 29, 84–106 (2012)CrossRefGoogle Scholar
  65. 65.
    Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B.: A survey of computation offloading for mobile systems. Mobile Networks and Applications 18(1), 129–140 (2013)CrossRefGoogle Scholar
  66. 66.
    Yu, P., Ma, X., Cao, J., Lu, J.: Application mobility in pervasive computing: A survey. Pervasive and Mobile Computing 9, 2–17 (2012)CrossRefGoogle Scholar
  67. 67.
    Flinn, J.: Cyber foraging: Bridging mobile and cloud computing. In: Satyanarayanan, M. (ed.) Synthesis Lectures on Mobile and Pervasive Computing. Morgan & Claypool Publishers (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Grace A. Lewis
    • 1
    • 2
  • Patricia Lago
    • 2
  • Giuseppe Procaccianti
    • 2
  1. 1.Carnegie Mellon Software Engineering InstituteUSA
  2. 2.VU University AmsterdamThe Netherlands

Personalised recommendations