Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Discrete Geometry for Computer Imagery

DGCI 2014: Discrete Geometry for Computer Imagery pp 99–110Cite as

  1. Home
  2. Discrete Geometry for Computer Imagery
  3. Conference paper
Efficient Neighbourhood Computing for Discrete Rigid Transformation Graph Search

Efficient Neighbourhood Computing for Discrete Rigid Transformation Graph Search

  • Yukiko Kenmochi17,
  • Phuc Ngo18,
  • Hugues Talbot17 &
  • …
  • Nicolas Passat19 
  • Conference paper
  • 839 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8668)

Abstract

Rigid transformations are involved in a wide variety of image processing applications, including image registration. In this context, we recently proposed to deal with the associated optimization problem from a purely discrete point of view, using the notion of discrete rigid transformation (DRT) graph. In particular, a local search scheme within the DRT graph to compute a locally optimal solution without any numerical approximation was formerly proposed. In this article, we extend this study, with the purpose to reduce the algorithmic complexity of the proposed optimization scheme. To this end, we propose a novel algorithmic framework for just-in-time computation of sub-graphs of interest within the DRT graph. Experimental results illustrate the potential usefulness of our approach for image registration.

Keywords

  • image registration
  • discrete rigid transformation
  • discrete optimization
  • DRT graph

The research leading to these results has received funding from the French Agence Nationale de la Recherche (Grant Agreement ANR-2010-BLAN-0205).

Download conference paper PDF

References

  1. Nouvel, B., Rémila, É.: Characterization of bijective discretized rotations. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 248–259. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity and quasi-periodicity properties. Discrete Appl. Math. 147, 325–343 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Berthé, V., Nouvel, B.: Discrete rotations and symbolic dynamics. Theor. Comput. Sci. 380, 276–285 (2007)

    CrossRef  MATH  Google Scholar 

  4. Nouvel, B.: Self-similar discrete rotation configurations and interlaced Sturmian words. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 250–261. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  5. Jacob, M.A., Andres, E.: On discrete rotations. In: Proc. DGCI, pp. 161–174 (1995)

    Google Scholar 

  6. Amir, A., Kapah, O., Tsur, D.: Faster two-dimensional pattern matching with rotations. Theor. Comput. Sci. 368, 196–204 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’État, Université Strasbourg 1 (1991)

    Google Scholar 

  8. Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  9. Richman, M.S.: Understanding discrete rotations. In: Proc. ICASSP, vol. 3, pp. 2057–2060. IEEE (1997)

    Google Scholar 

  10. Andres, E., Fernandez-Maloigne, C.: Discrete rotation for directional orthogonal wavelet packets. In: Proc. ICIP, vol. 2, pp. 257–260. IEEE (2001)

    Google Scholar 

  11. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE T. Image Process. 23, 885–897 (2014)

    CrossRef  MathSciNet  Google Scholar 

  12. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Comput. Vis. Image Und. 117, 393–408 (2013)

    CrossRef  Google Scholar 

  13. Nouvel, B.: Rotations discrètes et automates cellulaires. PhD thesis, École Normale Supérieure de Lyon (2006)

    Google Scholar 

  14. Nouvel, B., Rémila, É.: Incremental and transitive discrete rotations. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 199–213. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  15. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of rotation angles from digital images. Pattern Recogn. 42, 1708–1717 (2009)

    CrossRef  MATH  Google Scholar 

  16. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: On 2D constrained discrete rigid transformations. Ann. Math. Artif. Intell. (in press), doi:10.1007/s10472-014-9406-x

    Google Scholar 

  17. Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49, 418–433 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Ngo, P., Sugimoto, A., Kenmochi, Y., Passat, N., Talbot, H.: Discrete rigid transformation graph search for 2D image registration. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2013. LNCS, vol. 8334, pp. 228–239. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  19. Zitová, B., Flusser, J.: Image registration methods: A survey. Image Vision Comput. 21, 977–1000 (2003)

    CrossRef  Google Scholar 

  20. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn. Elsevier Academic Press (2007)

    Google Scholar 

  21. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P.: Recalage d’images médicales. Tech Ing (MED910) (2014)

    Google Scholar 

  22. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. Journal Comput. Syst. Sci. 38, 165–194 (1989); Corrig. 42, 249–251 (1991)

    Google Scholar 

  23. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4, 321–322 (1961)

    CrossRef  Google Scholar 

  24. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 409–422. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  25. Flusser, J., Zitová, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Université Paris-Est, LIGM, CNRS, France

    Yukiko Kenmochi & Hugues Talbot

  2. CEA LIST – DIGITEO Labs, France

    Phuc Ngo

  3. Université de Reims Champagne-Ardenne, CReSTIC, France

    Nicolas Passat

Authors
  1. Yukiko Kenmochi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Phuc Ngo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Hugues Talbot
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Nicolas Passat
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Dipartimento di Matematica e Informatica, Università degli Studi di Firenze, Viale Morgagni 65, 50134, Firenze, Italy

    Elena Barcucci & Andrea Frosini & 

  2. Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università degli Studi di Siena, Viao Roma, 56, 53100, Siena, Italy

    Simone Rinaldi

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kenmochi, Y., Ngo, P., Talbot, H., Passat, N. (2014). Efficient Neighbourhood Computing for Discrete Rigid Transformation Graph Search. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds) Discrete Geometry for Computer Imagery. DGCI 2014. Lecture Notes in Computer Science, vol 8668. Springer, Cham. https://doi.org/10.1007/978-3-319-09955-2_9

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-09955-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09954-5

  • Online ISBN: 978-3-319-09955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature