An Experiment in Automatic Design of Robot Swarms

AutoMoDe-Vanilla, EvoStick, and Human Experts
  • Gianpiero Francesca
  • Manuele Brambilla
  • Arne Brutschy
  • Lorenzo Garattoni
  • Roman Miletitch
  • Gaëtan Podevijn
  • Andreagiovanni Reina
  • Touraj Soleymani
  • Mattia Salvaro
  • Carlo Pinciroli
  • Vito Trianni
  • Mauro Birattari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8667)

Abstract

We present an experiment in automatic design of robot swarms. For the first time in the swarm robotics literature, we perform an objective comparison of multiple design methods: we compare swarms designed by two automatic methods—vanilla and EvoStick—with swarms manually designed by human experts. vanilla and EvoStick have been previously published and tested on two tasks. To evaluate their generality, in this paper we test them without any modification on five new tasks. Besides confirming that vanilla is effective, our results provide new insight into the design of robot swarms. In particular, our results indicate that, at least under the adopted experimental protocol, not only does automatic design suffer from the reality gap, but also manual design. The results also show that both manual and automatic methods benefit from bias injection. In this work, bias injection consists in restricting the design search space to the combinations of pre-existing modules. The results indicate that bias injection helps to overcome the reality gap, yielding better performing robot swarms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  2. 2.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)CrossRefGoogle Scholar
  4. 4.
    Trianni, V., Nolfi, S.: Engineering the evolution of self-organizing behaviors in swarm robotics: A case study. Artificial Life 17(3), 183–202 (2011)CrossRefGoogle Scholar
  5. 5.
    Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence 8(2), 89–112 (2014)Google Scholar
  6. 6.
    Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4(1), 1–58 (1992)CrossRefGoogle Scholar
  7. 7.
    Dietterich, T., Kong, E.B.: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Technical report, Department of Computer Science, Oregon State University (1995)Google Scholar
  8. 8.
    Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: 9th Conf. on Autonomous Robot Systems and Competitions, Portugal, Instituto Politécnico de Castelo Branco, pp. 59–65 (2009)Google Scholar
  9. 9.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 11–18. Morgan Kaufmann, San Francisco (2002)Google Scholar
  10. 10.
    Birattari, M.: Tuning Metaheuristics. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  11. 11.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar
  12. 12.
    R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing (2008)Google Scholar
  13. 13.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6(4), 271–295 (2012)CrossRefGoogle Scholar
  14. 14.
    Stranieri, A., Turgut, A., Francesca, G., Reina, A., Dorigo, M., Birattari, M.: IRIDIA’s arena tracking system. Technical Report TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles, Belgium (2013)Google Scholar
  15. 15.
    Conover, W.J.: Practical Nonparametric Statistics. Wiley, New York (1999)Google Scholar
  16. 16.
    Francesca, G., et al.: An experiment in automatic design of robot swarms. Supplementary Material (2014), http://iridia.ulb.ac.be/supp/IridiaSupp2014-004

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gianpiero Francesca
    • 1
  • Manuele Brambilla
    • 1
  • Arne Brutschy
    • 1
  • Lorenzo Garattoni
    • 1
  • Roman Miletitch
    • 1
  • Gaëtan Podevijn
    • 1
  • Andreagiovanni Reina
    • 1
  • Touraj Soleymani
    • 1
  • Mattia Salvaro
    • 1
    • 2
  • Carlo Pinciroli
    • 1
  • Vito Trianni
    • 3
  • Mauro Birattari
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBelgium
  2. 2.Università di BolognaItaly
  3. 3.ISTC-CNRRomeItaly

Personalised recommendations