Skip to main content

A Higher Stacky Perspective on Chern–Simons Theory

  • Chapter
  • First Online:
Mathematical Aspects of Quantum Field Theories

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

The first part of this text is a gentle exposition of some basic constructions and results in the extended prequantum theory of Chern–Simons-type gauge field theories. We explain in some detail how the action functional of ordinary 3d Chern–Simons theory is naturally localized (“extended”, “multi-tiered”) to a map on the universal moduli stack of principal connections, a map that itself modulates a circle-principal 3-connection on that moduli stack, and how the iterated transgressions of this extended Lagrangian unify the action functional with its prequantum bundle and with the WZW-functional. In the second part we provide a brief review and outlook of the higher prequantum field theory of which this is a first example. This includes a higher geometric description of supersymmetric Chern–Simons theory, Wilson loops and other defects, generalized geometry, higher Spin-structures, anomaly cancellation, and various other aspects of quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are using the term “gauge group” to refer to the structure group of the theory. This is not to be confused with the group of gauge transformations.

  2. 2.

    Even 1-dimensional Chern–Simons theory exhibits a rich structure once we pass to derived higher gauge groups as in [46]. This goes beyond the present exposition, but see Sect. 5.1 for an outlook and Sect. 5.7.10 of [79] for more details.

  3. 3.

    That is, for the collections of all such bundles, with gauge transformations as morphisms.

  4. 4.

    The reader unfamiliar with the language of higher stacks and simplicial presheaves in differential geometry can find an introduction in [31].

  5. 5.

    It is noteworthy that this indeed is a stack on the site \({\mathrm {CartSp}}\). On the larger but equivalent site of all smooth manifolds it is just a prestack that needs to be further stackified.

  6. 6.

    See for instance [54] for an original reference on geometric quantization and see [67] for further pointers.

  7. 7.

    The existence and functoriality of the path \(\infty \)-groupoids is one of the features characterizing the higher topos of higher smooth stacks as being cohesive, see [79].

  8. 8.

    That is, when written in local coordinates \((u, \sigma )\) on \(U \times \varSigma _2\), then \(A=A_i(u, \sigma ) du^i + A_j (u, \sigma ) d\sigma ^j\) reduces to the second summand.

  9. 9.

    This can be traced back to [4]; a nice modern review can be found in Sect. 4 of [6].

  10. 10.

    This means that here we are secretly moving from the topos of (higher) stacks on smooth manifolds to its arrow topos, see Sect. 5.2.

  11. 11.

    See [13] for a comprehensive treatment of the étale site of smooth manifolds and of the higher topos of higher stacks over it.

  12. 12.

    More detailed discussion of how (quantum) fields generally are maps in slices of cohesive toposes has been given in the lecture notes [80] and in Sects. 1.2.16, 5.4 of [79].

  13. 13.

    A discussion of this and the following can be found in Sects. 3.9.13 and 4.4.19 of [79]; see also [27].

  14. 14.

    This follows for instance as the Lie integration of the result in [5] that the Heisenberg Lie 2-algebra here is the \(\mathfrak {string}\,(\mathfrak {g})\) Lie 2-algebra; see also [27].

  15. 15.

    The notion of \((\mathbf {B}U(n))\)-fiber 2-bundle is equivalently that of nonabelian \(U(n)\)-gerbes in the original sense of Giraud, see [64]. Notice that for \(n = 1\) this is more general than then notion of \(U(1)\)-bundle gerbe: a \(G\)-gerbe has structure 2-group \(\mathbf {Aut}(\mathbf {B}G)\), but a \(U(1)\)-bundle gerbe has structure 2-group only in the left inclusion of the fiber sequence \(\mathbf {B}U(1) \hookrightarrow \mathbf {Aut}(\mathbf {B}U(1)) \rightarrow \mathbb {Z}_2\).

References

  1. A. Alekseev, Y. Barmaz, P. Mnev, Chern-Simons Theory with Wilson Lines and Boundary in the BV-BFV Formalism, arXiv:1212.6256

  2. M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12(7), 1405–1429 (1997). arXiv:hep-th/9502010

  3. M.F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces. Philos. Trans. Royal Soc. Lond. A 308, 523–615 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.P. Balachandran, S. Borchardt, A. Stern, Lagrangian and Hamiltonian descriptions of Yang-Mills particles. Phys. Rev. D 17, 3247–3256 (1978)

    Article  ADS  Google Scholar 

  5. J.C. Baez, C.L. Rogers, Categorified symplectic geometry and the string lie 2-Algebra. Homol. Homotopy Appl. 12, 221–236 (2010). arXiv:0901.4721

  6. C. Beasley, Localization for Wilson loops in Chern-Simons theory, in Chern-Simons Gauge Theory: 20 Years After, vol. 50, AMS/IP Studies in Advanced Mathematics, ed. by J. Andersen, et al. (AMS, Providence, 2011), arXiv:0911.2687

  7. P. Bouwknegt, A. Carey, V. Mathai, M. Murray, D. Stevenson, K-theory of bundle gerbes and twisted K-theory. Commun. Math. Phys. 228, 17–49 (2002). arXiv:hep-th/0106194

  8. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Modern Birkhäuser Classics (Springer, New York, 2007)

    Google Scholar 

  9. J.-L. Brylinski, D. McLaughlin, A geometric construction of the first Pontryagin class, Quantum Topology, vol. 3, Knots Everything (World Scientific Publishing, River Edge, 1993), pp. 209–220

    Google Scholar 

  10. J.-L. Brylinski, D. McLaughlin, The geometry of degree-four characteristic classes and of line bundles on loop spaces I. Duke Math. J. 75(3), 603–638 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-L. Brylinski, D. McLaughlin, The geometry of degree-4 characteristic classes and of line bundles on loop spaces II. Duke Math. J. 83(1), 105–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.-L. Brylinski, D. McLaughlin, Cech cocycles for characteristic classes. Commun. Math. Phys. 178(1), 225–236 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D. Carchedi, Étale Stacks as Prolongations, arXiv:1212.2282

  14. A.L. Carey, S. Johnson, M.K. Murray, Holonomy on D-branes. J. Geom. Phys. 52, 186–216 (2004). arXiv:hep-th/0204199

  15. A.L. Carey, S. Johnson, M.K. Murray, D. Stevenson, B.-L. Wang, Bundle gerbes for Chern-Simons and Wess-Zumino-Witten theories. Commun. Math. Phys. 259, 577–613 (2005). arXiv:math/0410013

  16. A.S. Cattaneo, G. Felder, Poisson sigma models and symplectic groupoids. Prog. Math. 198, 61–93 (2001). arXiv:math/0003023

  17. A.S. Cattaneo, G. Felder, On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 56, 163–179 (2001). arXiv:math/0102108

  18. A.S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, arXiv:1201.0290

  19. A.S. Cattaneo, P. Mnev, N. Reshetikhin, Classical and quantum Lagrangian field theories with boundary, in PoS(CORFU2011)044, arXiv:1207.0239

  20. S.S. Chern, J. Simons, Characteristic forms and geometric invariants. Ann. Math. 99(2), 48–69 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. K. J. Costello, A geometric construction of the Witten genus I, arXiv:1006.5422

  22. P. Deligne, The Grothendieck Festschrift, Catégories tannakiennes, Modern Birkhäuser Classics 2007, pp. 111–195

    Google Scholar 

  23. J. Distler, D.S. Freed, GéW Moore, Orientifold precis, in Mathematical Foundations of Quantum Field and Perturbative String Theory, Proceedings of Symposia in Pure Mathematics, ed. by H. Sati, U. Schreiber (AMS, Providence, 2011)

    Google Scholar 

  24. P. Donovan, M. Karoubi, Graded Brauer groups and K-theory with local coefficients. Publ. Math. IHES 38, 5–25 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.L. Dupont, R. Ljungmann, Integration of simplicial forms and deligne cohomology. Math. Scand. 97(1), 11–39 (2005)

    MathSciNet  MATH  Google Scholar 

  26. D. Fiorenza, C. Rogers, U. Schreiber, A higher Chern-Weil derivation of AKSZ sigma-models. Int. J. Geom. Methods Mod. Phys. 10, 1250078 (2013). arXiv:1108.4378

  27. D. Fiorenza, C. L. Rogers, U. Schreiber, L-infinity algebras of local observables from higher prequantum bundles, Homology, Homotopy and Applications. 16(2), 2014, pp.107–142. arXiv:1304.6292

  28. D. Fiorenza, H. Sati, U. Schreiber, Multiple M5-branes, String 2-connections, and 7d nonabelian Chern-Simons theory. Adv. Theor. Math. Phys. 18(2), 229–321 (2014). arXiv:1201.5277

  29. D. Fiorenza, H. Sati, U. Schreiber, The \(E_8\) moduli 3-stack of the C-field in M-theory, to appear in Comm. Math. Phys. arXiv:1202.2455

  30. D. Fiorenza, H. Sati, U. Schreiber, Extended higher cup-product Chern-Simons theories, J. Geom. Phys. 74 (2013), 130–163. arXiv:1207.5449

  31. D. Fiorenza, U. Schreiber, and J. Stasheff, Čech cocycles for differential characteristic classes - An \(\infty \)-Lie theoretic construction, Adv. Theor. Math. Phys. 16(1), 149–250 (2012) arXiv:1011.4735

  32. D.S. Freed, Classical Chern-Simons theory, Part I. Adv. Math. 113, 237–303 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.S. Freed, Classical Chern-Simons theory, Part II. Houst. J. Math. 28, 293–310 (2002)

    MathSciNet  MATH  Google Scholar 

  34. D.S. Freed, Remarks on Chern-Simons theory. Bulletin AMS (New Series) 46, 221–254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. D.S. Freed, Lectures on twisted K-theory and orientifolds. Lecture series at K-theory and quantum fields, Erwin Schrödinger Institute (2012), http://ncatlab.org/nlab/files/FreedESI2012.pdf

  36. D.S. Freed, M.J. Hopkins, J. Lurie, C. Teleman, Topological quantum field theories from compact Lie groups, in A Celebration of the Mathematical Legacy of Raoul Bott, AMS, 2010, arXiv:0905.0731

  37. D.S. Freed, C. Teleman, Relative quantum field theory, arXiv:1212.1692

  38. D.S. Freed, E. Witten, Anomalies in string theory with D-branes. Asian J. Math. 3, 819–852 (1999). arXiv:hep-th/9907189

  39. P. Gajer, Geometry of deligne cohomology. Invent. Math. 127(1), 155–207 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  40. K. Gawedzki, Topological actions in two-dimensional quantum field theories, in Nonperturbative quantum field theory (Cargése, 1987), NATO Adv. Sci. Inst. Ser. B Phys, vol. 185 (Plenum, New York, 1988), pp. 101–141

    Google Scholar 

  41. K. Gawedzki, N. Reis, WZW branes and gerbes. Rev. Math. Phys. 14, 1281–1334 (2002). arXiv:hep-th/0205233

  42. K. Gawedzki, R. Suszek, K. Waldorf, Global gauge anomalies in two-dimensional bosonic sigma models, Commun. Math. Phys. 302, 513–580 (2011). arXiv:1003.4154

  43. V. Ginzburg, V. Guillemin, Y. Karshon, Moment Maps, Cobordisms, and Hamiltonian Group Actions (AMS, Providence, 2002)

    MATH  Google Scholar 

  44. K. Gomi, Y. Terashima, A fiber integration formula for the smooth Deligne cohomology. Int. Math. Res. Notices 13, 699–708 (2000)

    Article  MathSciNet  Google Scholar 

  45. K. Gomi, Y. Terashima, Higher-dimensional parallel transports. Math. Res. Lett. 8, 25–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Grady, O. Gwilliam, One-dimensional Chern-Simons theory and the \(\hat{A}\)-genus, preprint arXiv:1110.3533

  47. N. Hitchin, in Geometry of special holonomy and related topics. Surveys in differential geometry. Lectures on generalized geometry, vol. 16 (International Press, Somerville, 2011), pp. 79–124

    Google Scholar 

  48. M.J. Hopkins, I.M. Singer, Quadratic functions in geometry, topology, and M-theory. J. Differential Geom. 70(3), 329–452 (2005). arXiv:math/0211216

  49. C. Hull, Generalised geometry for M-theory. J. High Energy Phys. 0707, 079 (2007). arXiv:hep-th/0701203

  50. N. Ikeda, Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). arXiv:hep-th/9312059

  51. N. Ikeda, Chern-Simons gauge theory coupled with BF theory. Int. J. Mod. Phys. A18, 2689–2702 (2003). arXiv:hep-th/0203043

  52. A. Kapustin, D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys. 4, 127–154 (2000). arXiv:hep-th/9909089

  53. A. Kirillov, Lectures on the orbit method. Graduate studies in mathematics, vol. 64 (AMS, Providence, 2004)

    Google Scholar 

  54. B. Kostant, On the definition of quantization, in Géométrie Symplectique et Physique Mathématique, Colloques Intern. CNRS, vol. 237, Paris, pp. 187–210 (1975)

    Google Scholar 

  55. A. Kotov, T. Strobl, Characteristic classes associated to Q-bundles, arXiv:0711.4106

  56. A. Kotov, T. Strobl, Generalizing geometry - algebroids and sigma models, in Handbook of Pseudo-riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, (2010), arXiv:1004.0632

  57. I. Kriz, H. Sati, Type IIB string theory, S-duality, and generalized cohomology. Nucl. Phys. B 715, 639–664 (2005). arXiv:hep-th/0410293

  58. D. Lispky, Cocycle constructions for topological field theories, UIUC thesis, (2010), http://ncatlab.org/nlab/files/LipskyThesis.pdf

  59. J. Lurie, Higher topos theory, vol. 170, Annals of Mathematics Studies (Princeton University Press, Princeton, 2009)

    Book  MATH  Google Scholar 

  60. J. Lurie, On the classification of topological field theories, Current Developments in Mathematics 2008, 129–280 (International Press, Somerville, 2009)

    Google Scholar 

  61. J. Milnor, The geometric realization of a semi-simplicial complex. Ann. Math. 65, 357–362 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Milnor, Morse Theory, Annals of Mathematics Studies (Princeton University Press, Princeton, 1963)

    Google Scholar 

  63. J. Milnor, J. Stasheff, Characteristic Classes, Annals of Mathematics Studies (Princeton University Press, Princeton, 1974)

    Google Scholar 

  64. T. Nikolaus, U. Schreiber, D. Stevenson, Principal \(\infty \)-bundles—general theory. J. Homotopy. Relat. Struct. June (2014) (DOI) 10.1007/s40062-014-0083-6

    Google Scholar 

  65. J. Nuiten, Masters thesis, Utrecht University (2013), http://ncatlab.org/schreiber/files/thesisNuiten.pdf

  66. J. Polchinski, String Theory, vols. 1 & 2 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  67. C.L. Rogers, Higher symplectic geometry, PhD thesis (2011), arXiv:1106.4068

  68. C.L. Rogers, Higher geometric quantization, talk at Higher Structures in Göttingen (2011), http://www.crcg.de/wiki/Higher_geometric_quantization

  69. D. Roytenberg, AKSZ-BV formalism and courant algebroid-induced topological field theories. Lett. Math. Phys. 79, 143–159 (2007). arXiv:hep-th/0608150

  70. H. Sati, Geometric and topological structures related to M-branes, Proc. Symp. Pure Math. 81, 181–236 (2010). arXiv:1001.5020

  71. H. Sati, Geometric and topological structures related to M-branes II: Twisted String- and \({String}^c\)-structures, J. Aust. Math. Soc. 90, 93–108 (2011). arXiv:1007.5419

  72. H. Sati, Twisted topological structures related to M-branes, Int. J. Geom. Methods Mod. Phys. 8, 1097–1116 (2011). arXiv:1008.1755

  73. H. Sati, Twisted topological structures related to M-branes II: Twisted Wu and Wu\({}^c\) structures. Int. J. Geom. Methods Mod. Phys. 09, 1250056 (2012). arXiv:1109.4461

  74. H. Sati, U. Schreiber, J. Stasheff, L\(_\infty \)-algebra connections and applications to String- and Chern-Simons \(n\)-transport, in Recent developments in Quantum Field Theory, Birkhäuser, (2009), arXiv:0801.3480

  75. H. Sati, U. Schreiber, J. Stasheff, Fivebrane structures, Rev. Math. Phys. 21, 1197–1240 (2009). arXiv:0805.0564

  76. H. Sati, U. Schreiber, J. Stasheff, Twisted differential String- and Fivebrane structures, Commun. Math. Phys. 315, 169–213 (2012). arXiv:0910.4001

  77. U. Schreiber, Quantum 2-States: Sections of 2-vector bundles, talk at Higher categories and their applications, Fields institute (2007), http://ncatlab.org/nlab/files/Schreiber2States.pdf

  78. U. Schreiber, AQFT from n-functorial QFT, Commun. Math. Phys. 291, 357–401 (2009). arXiv:0806.1079

  79. U. Schreiber, Differential cohomology in a cohesive \(\infty \) -topos, arXiv:1310.7930

  80. U. Schreiber, Twisted differential structures in String theory, Lecture series at ESI program on K-theory and Quantum Fields (2012), http://ncatlab.org/nlab/show/twisted+smooth+cohomology+in+string+theory

  81. U. Schreiber, M. Shulman, the complete correct reference here is "Quantum Gauge Field Theory in Cohesive Homotopy Type Theory, in Ross Duncan, Prakash Panangaden (eds.) Proceedings 9th Workshop on Quantum Physics and Logic, Brussels, Belgium, 10-12 October 2012 arXiv:1407.8427

  82. U. Schreiber, K. Waldorf, Connections on non-abelian Gerbes and their Holonomy. Theor. Appl. Categ. 28(17), 476–540 (2013) arXiv:0808.1923

  83. C. Schweigert, K. Waldorf, Gerbes and Lie groups, in Developments and Trends in Infinite-Dimensional Lie Theory, Progress in Mathematics, (Birkhäuser, Basel, 2011), arXiv:0710.5467

  84. K. Waldorf, String connections and Chern-Simons theory. Trans. Amer. Math. Soc. 365, 4393–4432 (2013). arXiv:0906.0117

  85. C.T.C. Wall, Graded Brauer groups. J. Reine Angew. Math. 213, 187–199 (1963/1964)

    Google Scholar 

  86. B.-L. Wang, Geometric cycles, index theory and twisted K-homology, J. Noncommut. Geom. 2, 497–552 (2008). arXiv:0710.1625

  87. A. Weinstein, The symplectic structure on moduli space, The Floer Memorial Volume, vol. 133, Progress in Mathematics (Birkhäuser, Basel, 1995), pp. 627–635

    Google Scholar 

  88. E. Witten, Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. E. Witten, Five-brane effective action in M-theory. J. Geom. Phys. 22, 103–133 (1997). arXiv:hep-th/9610234

  90. E. Witten, AdS/CFT correspondence and topological field theory. J. High Energy Phys. 9812, 012 (1998). arXiv:hep-th/9812012

  91. B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B390, 33–152 (1993). arXiv:hep-th/9206084

Download references

Acknowledgments

D.F. thanks ETH Zürich for hospitality. The research of H.S. is supported by NSF Grant PHY-1102218. U.S. thanks the University of Pittsburgh for an invitation in December 2012, during which part of this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Fiorenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fiorenza, D., Sati, H., Schreiber, U. (2015). A Higher Stacky Perspective on Chern–Simons Theory. In: Calaque, D., Strobl, T. (eds) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-09949-1_6

Download citation

Publish with us

Policies and ethics