Skip to main content

Metabolic and Structural Functions of Lipoxygenases in Skin

  • Chapter
  • First Online:
Lipids and Skin Health

Abstract

Skin is an abundant source of lipoxygenases (LOX). All known LOX genes are expressed in human and mouse skin, respectively. Aberrant expression of individual LOX genes and overshooting enzymatic activities have been found to be associated with acute skin inflammation and chronic inflammatory diseases including atopic dermatitis, psoriasis and others and epithelial cancer. In addition to the pathophysiologic effects, an important structural function in the maintenance of skin permeability barrier could be attributed to two recently described novel LOX, i.e. 12R-LOX and eLOX-3. This is evidenced by genetic studies showing that loss-of-function mutations in the corresponding human LOX genes, ALOX12B and ALOXE3, are linked to the development of autosomal recessive congenital ichthyosis and by gene knockout studies in mice showing that targeted LOX gene inactivation leads to a post-natal lethal phenotype which is due to a severely impaired inwards and outwards permeability barrier function. Data from the LOX knockout mouse models and from in vitro organotypic skin equivalents indicate that LOX action in barrier function can be traced back to the oxidation of the linoleate moiety of ω-hydroxyacyl ceramides which constitutes an important step in the formation of the corneocyte lipid envelope as an indispensable structural component of the epidermal barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARCI:

Autosomal recessive congenital ichthyoses

CE:

Cornified cell envelope

CLE:

Corneocyte lipid envelope

e12-LOX:

Epidermis-type 12-lipoxygenase

EFA:

Essential fatty acid(s)

eLOX-3:

epidermis-type lipoxygenase-3

EOS:

Esterified omega-hydroxyacyl-sphingosine(s)

(F)FA:

(Free) fatty acid(s)

GlcCer:

Glucosylceramide(s)

H(P)ETE:

Hydro(pero)xyeicosatetraenoic acid

H(P)ODE:

Hydro(pero)xyoctadecadienoic acid

HxA, HxB:

Hepoxilin A or B

l12-LOX:

Leukocyte-type 12-lipoxygenase

LOX:

Lipoxygenases(s)

OS:

Omega-hydroxyacyl-sphingosine(s)

p12-LOX:

Platelet-type 12-lipoxygenase

PUFA:

Polyunsaturated fatty acids

TEWL:

Transepidermal water loss

VLC-FA:

Very long chain fatty acid(s)

References

  • Akiyama M, Sakai K, Yanagi T, et al. Partially disturbed lamellar granule secretion in mild congenital ichthyosiform erythroderma with ALOX12B mutations. Brit J Dermatol. 2010;163:201–4.

    CAS  Google Scholar 

  • Anton R, Puig L, Esgleyes T, et al. Occurrence of hepoxilins and trioxilins in psoriatic lesions. J Invest Dermatol. 1998;110:303–10.

    Google Scholar 

  • Anton R, Vila L. Stereoselective biosynthesis of hepoxilin B3 in human epidermis. J Invest Dermatol. 2000;114:554–59.

    Google Scholar 

  • Baer AN, Klaus MV, Green FA. Epidermal fatty acid oxygenases are activated in non-psoriatic dermatoses. J Invest Dermatol. 1995;104:251–5.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia B, Tang S, Yang P, et al. Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene. 2005;24:3583–95.

    Article  CAS  PubMed  Google Scholar 

  • Boeglin WE, Kim RB, Brash AR. A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc Natl Acad Sci U S A. 1998;95:6744–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999;274:23679–82.

    Article  CAS  PubMed  Google Scholar 

  • Brash AR, Yu Z, Boeglin WE, et al. The hepoxilin connection in the epidermis. FEBS J. 2007;274:3494–502.

    Article  CAS  PubMed  Google Scholar 

  • Bürger F, Krieg P, Kinzig A, et al. Constitutive expression of 8-lipoxygenase in papillomas and clastogenic effects of lipoxygenase-derived arachidonic acid metabolites in keratinocytes. Mol Carcinog. 1999;24:108–17.

    Article  PubMed  Google Scholar 

  • Burr GO, Burr MM. On the nature and role of the fatty acids essential in nutrition. J Biol Chem. 1930;86:587–621.

    CAS  Google Scholar 

  • Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6:328–40.

    Article  CAS  PubMed  Google Scholar 

  • De Juanes S, Epp N, Latzko S, et al. Development of an ichthyosiform phenotype in Alox12b-deficient mouse skin transplants. J Invest Dermatol. 2009;129:1429–36.

    Article  CAS  PubMed  Google Scholar 

  • Eckl KM, Krieg P, Kuster W, et al. Mutation spectrum and functional analysis of epidermis-type lipoxygenases in patients with autosomal recessive congenital ichthyosis. Hum Mutat. 2005;26:351–61.

    Article  CAS  PubMed  Google Scholar 

  • Eckl KM, De Juanes S, Kurtenbach J, et al. Molecular analysis of 250 patients with autosomal recessive congenital ichthyosis: evidence for mutation hotspots in ALOXE3 and allelic heterogeneity in ALOX12B. J Invest Dermatol. 2009;129:1421–8.

    Article  CAS  PubMed  Google Scholar 

  • Eckl KM, Tidhar R, Thiele H, et al. Impaired epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl chain length. J Invest Dermatol. 2013;133:2202–11.

    Article  CAS  PubMed  Google Scholar 

  • Elias PM, Fartasch M, Crumrine D, et al. Origin of the corneocyte lipid envelope (CLE): observations in harlequin ichthyosis and cultured human keratinocytes. J Invest Dermatol. 2000;115:765–9.

    Article  CAS  PubMed  Google Scholar 

  • Epp N, Fürstenberger G, Müller K, et al. 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol. 2007;177:173–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feingold KR. The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res. 2009;50 Suppl:S417–22.

    Article  Google Scholar 

  • Fischer J. Autosomal recessive congenital ichthyosis. J Invest Dermatol. 2009;129:1319–21.

    Article  CAS  PubMed  Google Scholar 

  • Fischer SM, Hagerman RA, Li-Stiles E, et al. Arachidonate has protumor-promoting action that is inhibited by linoleate in mouse skin carcinogenesis. J Nutr. 1996;126:1099S–104S.

    CAS  PubMed  Google Scholar 

  • Fürstenberger G, Krieg P, Müller-Decker K, et al. What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? Int J Cancer. 2006;119:2247–54.

    Article  PubMed  Google Scholar 

  • Grall A, Guaguere E, Planchais S, et al. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet. 2012;44:140–7.

    Article  CAS  PubMed  Google Scholar 

  • Haeggstrom JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111:5866–98.

    Article  PubMed  Google Scholar 

  • Hagerman RA, Fischer SM, Locniskar MF. Effect of 12-O-tetradecanoylphorbol-13-acetate on inhibition of expression of keratin 1 mRNA in mouse keratinocytes mimicked by 12(S)-hydroxyeicosatetraenoic acid. Mol Carcinog. 1997;19:157–64.

    Article  CAS  PubMed  Google Scholar 

  • Hamberg M, Samuelsson B. Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci U S A. 1974;71:3400–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammarström S, Hamberg M, Samuelsson B, et al. Increased concentrations of nonesterified arachidonic acid, 12L-hydroxy-5,8,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2alpha in epidermis of psoriasis. Proc Natl Acad Sci U S A. 1975;72:5130–4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harting M, Brunetti-Pierri N, Chan CS, et al. Self-healing collodion membrane and mild nonbullous congenital ichthyosiform erythroderma due to 2 novel mutations in the ALOX12B gene. Arch Dermatol. 2008;144:351–6.

    Article  CAS  PubMed  Google Scholar 

  • Hussain H, Shornick LP, Shannon VR, et al. Epidermis contains platelet-type 12-lipoxygenase that is overexpressed in germinal layer keratinocytes in psoriasis. Am J Physiol. 1994;266:C243–53.

    CAS  PubMed  Google Scholar 

  • Israeli S, Khamaysi Z, Fuchs-Telem D, et al. A mutation in LIPN, encoding epidermal lipase N, causes a late-onset form of autosomal-recessive congenital ichthyosis. Am J Hum Genet. 2011;88:482–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Israeli S, Goldberg I, Fuchs-Telem D, et al. Non-syndromic autosomal recessive congenital ichthyosis in the Israeli population. Clin Exp Dermatol. 2013;38(8):911–6.

    Article  CAS  PubMed  Google Scholar 

  • Jobard F, Lefevre C, Karaduman A, et al. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum Mol Genet. 2002;11:107–13.

    Article  CAS  PubMed  Google Scholar 

  • Kantarci A, Van Dyke TE. Lipoxins in chronic inflammation. Crit Rev Oral Biol Med. 2003;14:4–12.

    Article  PubMed  Google Scholar 

  • Kim E, Rundhaug JE, Benavides F, et al. An antitumorigenic role for murine 8S-lipoxygenase in skin carcinogenesis. Oncogene. 2005;24:1174–87.

    Article  CAS  PubMed  Google Scholar 

  • Kinzig A, Heidt M, Fürstenberger G, et al. cDNA cloning, genomic structure, and chromosomal localization of a novel murine epidermis-type lipoxygenase. Genomics. 1999;58:158–64.

    Article  CAS  PubMed  Google Scholar 

  • Krieg P, Kinzig A, Heidt M, et al. cDNA cloning of a 8-lipoxygenase and a novel epidermis-type lipoxygenase from phorbol ester-treated mouse skin. Biochim Biophys Acta. 1998;1391:7–12.

    Article  CAS  PubMed  Google Scholar 

  • Krieg P, Marks F, Fürstenberger G. A gene cluster encoding human epidermis-type lipoxygenases at chromosome 17p13.1: cloning, physical mapping, and expression. Genomics. 2001;73:323–30.

    Article  CAS  PubMed  Google Scholar 

  • Krieg P, Rosenberger S, De Juanes S, et al. Aloxe3 knockout mice reveal a function of epidermal lipoxygenase-3 as hepoxilin synthase and its pivotal role in barrier formation. J Invest Dermatol. 2013;133:172–80.

    Article  CAS  PubMed  Google Scholar 

  • Lesueur F, Bouadjar B, Lefevre C, et al. Novel mutations in ALOX12B in patients with autosomal recessive congenital ichthyosis and evidence for genetic heterogeneity on chromosome 17p13. J Invest Dermatol. 2007;127:829–34.

    Article  CAS  PubMed  Google Scholar 

  • Lefevre C, Bouadjar B, Karaduman A, et al. Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Hum Mol Genet. 2004;13:2473–82.

    Google Scholar 

  • Moran JL, Qiu H, Turbe-Doan A, et al. A mouse mutation in the 12R-lipoxygenase, Alox12b, disrupts formation of the epidermal permeability barrier. J Invest Dermatol. 2007;127:1893–97.

    Article  CAS  PubMed  Google Scholar 

  • Muga SJ, Thuillier P, Pavone A, et al. 8S-lipoxygenase products activate peroxisome proliferator-activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth Differ. 2000;11:447–54.

    CAS  PubMed  Google Scholar 

  • Müller K, Siebert M, Heidt M, et al. Modulation of epidermal tumor development caused by targeted overexpression of epidermis-type 12S-lipoxygenase. Cancer Res. 2002;62:4610–16.

    PubMed  Google Scholar 

  • Nugteren DH, Kivits GA. Conversion of linoleic acid and arachidonic acid by skin epidermal lipoxygenases. Biochim Biophys Acta. 1987;921:135–41.

    Article  CAS  PubMed  Google Scholar 

  • Nugteren DH, Christ Hazelhof E, Van Der Beek A, et al. Metabolism of linoleic acid and other essential fatty acids in the epidermis of the rat. Biochim Biophys Acta. 1985;834:429–36.

    Article  CAS  PubMed  Google Scholar 

  • Oji V, Traupe H. Ichthyoses: differential diagnosis and molecular genetics. Eur J Dermatol. 2006;16:349–59.

    CAS  PubMed  Google Scholar 

  • Oji V, Tadini G, Akiyama M, et al. Revised nomenclature and classification of inherited ichthyoses: results of the first ichthyosis consensus conference in Soreze 2009. J Am Acad Dermatol. 2010;63:607–41.

    Article  PubMed  Google Scholar 

  • Pace-Asciak CR. The hepoxilins and some analogues: a review of their biology. Br J Pharmacol. 2009;158:972–81.

    Google Scholar 

  • Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.

    Article  PubMed  Google Scholar 

  • Rodriguez-Pazos L, Ginarte M, Fachal L, et al. Analysis of TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 in autosomal recessive congenital ichthyosis from Galicia (NW Spain): evidence of founder effects. Br J Dermatol. 2011;165:906–11.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger S, Dick A, Latzko S, et al. A mouse organotypic tissue culture model for autosomal recessive congenital ichthyosis. Br J Dermatol. 2014. doi: 10.1111/bjd.13308.

    Google Scholar 

  • Schweiger D, Fürstenberger G, Krieg P. Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways. J Lipid Res. 2007;48:553–64.

    Article  CAS  PubMed  Google Scholar 

  • Shappell SB, Boeglin WE, Olson SJ, et al. 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am J Pathol. 1999;155:235–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siebert M, Krieg P, Lehmann WD, et al. Enzymic characterization of epidermis-derived 12-lipoxygenase isoenzymes. Biochem J. 2001;355:97–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun D, Mcdonnell M, Chen XS, et al. Human 12(R)-lipoxygenase and the mouse ortholog: molecular cloning, expression, and gene chromosomal assignment. J Biol Chem. 1998;50:33540–47.

    Article  Google Scholar 

  • Tang DG, Bhatia B, Tang S, et al. 15-lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins Other Lipid Mediat. 2007;82:135–46.

    Article  CAS  PubMed  Google Scholar 

  • Vahlquist A, Bygum A, Ganemo A, et al. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients. J Invest Dermatol. 2010;130:438–43.

    Article  CAS  PubMed  Google Scholar 

  • Virmani J, Johnson EN, Klein-Szanto AJ, et al. Role of ‘platelet-type’ 12-lipoxygenase in skin carcinogenesis. Cancer Lett. 2001;162:161–5.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, Chen S, Feng Y, et al. Reduced expression of 15-lipoxygenase 2 in human head and neck carcinomas. Tumour Biol. 2006;27:261–73.

    Article  CAS  PubMed  Google Scholar 

  • Woollard PM. Stereochemical difference between 12-hydroxy-5,8,10,14-eicosatetraenoic acid in platelets and psoriatic lesions. Biochem Biophys Res Commun. 1986;136:169–76.

    Article  CAS  PubMed  Google Scholar 

  • Woollard PM. Novel stereoisomer of 12-hydroxy-5,8,10,14-eicosatetraenoic acid in psoriasis. Adv Prostaglandin Thromboxane Leukot Res. 1987;17B:627–31.

    CAS  PubMed  Google Scholar 

  • Yoo H, Jeon B, Jeon MS, et al. Reciprocal regulation of 12- and 15-lipoxygenases by UV-irradiation in human keratinocytes. FEBS Lett. 2008;582:3249–53.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Schneider C, Boeglin WE, et al. The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase. Proc Natl Acad Sci U S A. 2003;100:9162–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Z, Schneider C, Boeglin WE, et al. Mutations associated with a congenital form of ichthyosis (NCIE) inactivate the epidermal lipoxygenases 12R-LOX and eLOX3. Biochim Biophys Acta. 2005;1686(3):238–47.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Schneider C, Boeglin WE, et al. Human and mouse eLOX3 have distinct substrate specificities: implications for their linkage with lipoxygenases in skin. Arch Biochem Biophys. 2006;455:188–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Z, Schneider C, Boeglin WE, et al. Epidermal lipoxygenase products of the hepoxilin pathway selectively activate the nuclear receptor PPARalpha. Lipids. 2007;42:491–97.

    Google Scholar 

  • Zheng Y, Brash AR. Dioxygenase activity of epidermal lipoxygenase-3 unveiled: typical and atypical features of its catalytic activity with natural and synthetic polyunsaturated fatty acids. J Biol Chem. 2010;285:39866–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Yin H, Boeglin WE, et al. Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J Biol Chem. 2011;286:24046–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (KR 905/6-2, KR 905/7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Krieg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenberger, S., Fürstenberger, G., Krieg, P. (2015). Metabolic and Structural Functions of Lipoxygenases in Skin. In: Pappas, A. (eds) Lipids and Skin Health. Springer, Cham. https://doi.org/10.1007/978-3-319-09943-9_17

Download citation

Publish with us

Policies and ethics