Skip to main content

Facial Subcutaneous Adipocytes

  • Chapter
  • First Online:
Lipids and Skin Health

Abstract

Hypodermis or the subcutaneous layer is the third and forgotten layer of the skin and is mainly composed of fat cells, the adipocytes, which are grouped together in lobules separated by connective tissue. Although it is believed that this layer provides padding or acts as energy reserve and also provides thermoregulation, it is almost unexplored; especially on how this layer communicates with the dermis and its cell types.

An article with similar content has been sent for publication to the Adipocytes Journal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, Digby JE, Sewter CP, Lazar MA, Chatterjee VK, O’Rahilly S. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest. 1997;100(12):3149–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med. 1995;27(4):435–8.

    Article  CAS  PubMed  Google Scholar 

  • Beeson W, Woods E, Agha R. Tissue engineering, regenerative medicine, and rejuvenation in 2010: the role of adipose-derived stem cells. Facial Plast Surg. 2011;27(4):378–87.

    Article  CAS  PubMed  Google Scholar 

  • Bolinder J, Kager L, Ostman J, Arner P. Differences at the receptor and postreceptor levels between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes. 1983;32(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  • Bucky LP, Kanchwala SK. The role of autologous fat and alternative fillers in the aging face. Plast Reconstr Surg. 2007;120(6 Suppl):89S−97S.

    Google Scholar 

  • Cantile M, Procino A, D’Armiento M, Cindolo L, Cillo C. HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. J Cell Physiol. 2003;194(2):225–36.

    Article  CAS  PubMed  Google Scholar 

  • Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol. 2007;42(6):463–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen SR, Mailey B. Adipocyte-derived stem and regenerative cells in facial rejuvenation. Clin Plast Surg. 2012;39(4):453–64.

    Article  PubMed  Google Scholar 

  • Coleman S, Saboeiro A, Sengelmann R. A comparison of lipoatrophy and aging: volume deficits in the face. Aesthet Plast Surg. 2009;33(1):14–21.

    Article  CAS  Google Scholar 

  • Dankel SN, Fadnes DJ, Stavrum AK, Stansberg C, Holdhus R, Hoang T, Veum VL, Christensen BJ, Vage V, Sagen JV, Steen VM, Mellgren G. Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS ONE. 2010;5(6):e11033.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gehrke S, Brueckner B, Schepky A, Klein J, Iwen A, Bosch TC, Wenck H, Winnefeld M, Hagemann S. Epigenetic regulation of depot-specific gene expression in adipose tissue. PLoS ONE. 2013;8(12):e82516.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, Boucher J, Lewis C, Kahn CR. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A. 2006;103(17):6676–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karagiannides I, Tchkonia T, Dobson DE, Steppan CM, Cummins P, Chan G, Salvatori K, Hadzopoulou-Cladaras M, Kirkland JL. Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am J Physiol Regul Integr Comp Physiol. 2001;280(6):R1772–80.

    CAS  PubMed  Google Scholar 

  • Li WH, Pappas A, Zhang L, Ruvolo E, Cavender D. IL-11, IL-1alpha, IL-6, and TNF-alpha are induced by solar radiation in vitro and may be involved in facial subcutaneous fat loss in vivo. J Dermatol Sci. 2013;71(1):58–66.

    Google Scholar 

  • Mauriege P, Galitzky J, Berlan M, Lafontan M. Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest. 1987;17(2):156–65.

    Article  CAS  PubMed  Google Scholar 

  • McQuaid SE, Humphreys SM, Hodson L, Fielding BA, Karpe F, Frayn KN. Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes. 2010;59(10):2465–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seale P, Kajimura S, Spiegelman BM. Transcriptional control of brown adipocyte development and physiological function-of mice and men. Gene Dev. 2009;23(7):788–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sepe A, Tchkonia T, Thomou T, Zamboni M, Kirkland JL. Aging and regional differences in fat cell progenitors-a mini-review. Gerontology. 2011;57(1):66–75.

    Article  PubMed  Google Scholar 

  • Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tchkonia T, Morbeck DE, Von ZT, Van DJ, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence. Aging Cell. 2010;9(5):667–84.

    Google Scholar 

  • Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 2007;13(6):1291–98.

    Article  CAS  PubMed  Google Scholar 

  • Zenbio INC. Subcutaneous human adipocyte instruction manual. ZBM0001.03. 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Pappas PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pappas, A., Chon, SH. (2015). Facial Subcutaneous Adipocytes. In: Pappas, A. (eds) Lipids and Skin Health. Springer, Cham. https://doi.org/10.1007/978-3-319-09943-9_14

Download citation

Publish with us

Policies and ethics