Sapienic Acid: Species-Specific Fatty Acid Metabolism of the Human Sebaceous Gland

  • Stephen M. Prouty
  • Apostolos Pappas


Hair follicle-associated sebaceous glands secrete sebum, a highly complex lipid mixture that covers the skin surface and hair shafts. The functional versatility of lipids, combined with the wide array of sebaceous lipid classes and aliphatic moieties, provide mammals with a substrate that facilitates adaptation to their diverse environments, including interaction with animals and microbes. Unique among the complexity of sebaceous lipids is sapienic acid, a 16 carbon monounsaturated fatty acid with an extremely rare position of the double bond, located between carbons 6 and 7 from the carboxyl terminal. Human sebum is the only documented location in the animal kingdom where sapienic acid is abundant and naturally occurring. It is produced by fatty acid desaturase 2 (FADS2), the same enzyme that is rate-limiting in the formation of polyunsaturated fatty acids. Multiple tissue-specific mechanisms are utilized in the human sebaceous gland in order to “repurpose” FADS2 for the production of sapienic acid, chief among which is the reduction of competing desaturase activity. Among mammals, human sebum has the highest amount of free fatty acids, of which sapienic acid is the most abundant monounsaturated fatty acid. Consistent with the role of fatty acids in modulating host-microbe interactions, sapienic acid has the highest antimicrobial activity among free fatty acids in human sebum, while also demonstrating selectivity for Staphylococcus aureus, an opportunistic pathogen. Increased infection by Staphylococcus aureus is associated with a reduction in sapienic acid in sebum of patients with atopic dermatitis, and topical application of sapienic acid is correlated with decreased bacterial load and amelioration of symptoms. Taken together, this strongly suggests that sapienic acid functions as a “first-line” component of the innate immune system at the cutaneous surface. The species-specific nature of sapienic acid in human sebum is related to the unique architecture of human skin and its microbial environment. Insight into pathogenesis of human skin disease will benefit from further investigation into the biochemistry of sapienic acid production in human sebaceous glands.


Palmitic Acid Sebaceous Gland Stearidonic Acid Skin Surface Lipid Preputial Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Arachidonic acid, 20:4n-6, 20:4∆ 5,8,11,14


α-linolenic acid, 18:3n-3, 18:3∆ 9,12,15


Acyl-CoA wax alcohol acyltransferase 1


Acyl-CoA wax alcohol acyltransferase 2


Diacylglycerol O-acyltransferase 1


Diacylglycerol O-acyltransferase 2


Docosahexaenoic acid, 22:6n-3, 22:6∆ 4,7,10,13,16,19


Essential fatty acid


Eicosapentaenoic acid, 20:5n-3, 20:5∆ 5,8,11,14,17


Expressed sequence tag


Fatty acid desaturase 1


Fatty acid desaturase 2


Free fatty acid


Cis-6-hexadecenoic acid, 6Z-hexadecenoic acid, 16:1n-10, 16:1∆ 6


15-hydroxyeicosatetraenoic acid


5-hydroxy-(6E,8Z)-octadecadienoic acid


13-hydroxyoctadecadienoic acid


Linoleic acid, 18:2n-6, 18:2∆ 9,12




Oleic acid, 18:1n-9, 18:1∆ 9


5-oxo-(6E,8Z)-octadecadienoic acid


Palmitic acid, 16:0


Palmitoleic acid, 16:1n-7, 16:1∆ 9


Peroxisome proliferator activated Receptor-γ


Monounsaturated fatty acid


Polyunsaturated fatty acid


Sapienic acid, 16:1n-10, 16:1∆ 6


Stearoyl-CoA desaturase


Saturated fatty acid




Unsaturated fatty acid



The authors wish to thank the members of the The Skin Research Center of Johnson and Johnson who participated in this research, and especially Kurt Stenn, M.D. who had the vision to pursue sebaceous gland gene discovery and lipid biology.


  1. Ackman RG, Hooper SN, Frair W. Comparison of the the fatty acid compositions of depot fats from fresh-water and marine turtles. Comp Biochem Physiol B. 1971;40:931–44.PubMedGoogle Scholar
  2. Arsic B, Zhu Y, Heinrichs DE, McGavin MJ. Induction of the staphylococcal proteolytic cascade by antimicrobial fatty acids in community acquired methicillin resistant Staphylococcus aureus. PLoS ONE. 2012;7:e45952.CrossRefGoogle Scholar
  3. Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 1999;274:23679–82.PubMedCrossRefGoogle Scholar
  4. Brash AR, Boeglin WE, Chang MS. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A. 1997;94:6148–52.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Brasser AJ, Barwacz CA, Dawson DV, Brogden KA, Drake DR, Wertz PW. Presence of wax esters and squalene in human saliva. Arch Oral Biol. 2011;56:588–91.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brenner RR, Peluffo RO. Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic, and linolenic acids. J Biol Chem. 1966;241:5213–19.PubMedGoogle Scholar
  7. Brownlee RG, Silverstein RM, Muller-Schwarze D, Singer AG. Isolation, identification, and function of the chief component of the male tarsal scent in black-tailed deer. Nature. 1969;221:284–85.CrossRefGoogle Scholar
  8. Cahoon EB, Cranmer AM, Shanklin J, Ohlrogge JB. ∆6 hexadecenoic acid is synthesized by the activity of a soluble ∆6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm. J Biol Chem. 1994;269:27519–26.PubMedGoogle Scholar
  9. Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem. 1999;274:471–7.PubMedCrossRefGoogle Scholar
  10. Cossette C, Patel P, Anumolu JR, Sivendran S, Lee GJ, Gravel S, Graham FD, Lesimple A, Mamer OA, Rokach J, Powell WS. Human neutrophils convert the sebum-derived polyunsaturated fatty acid sebaleic acid to a potent granulocyte chemoattractant. J Biol Chem. 2008;283:11234–43PubMedCentralPubMedCrossRefGoogle Scholar
  11. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85:1629–42.PubMedCrossRefGoogle Scholar
  12. Dhouailly D. A new scenario for the evolutionary origin of hair, feather, and avian scales. J Anat. 2009;214:587–606.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Downing DT, Stewart ME, Wertz PW, Strauss JS. Essential fatty acids and acne. J Am Acad Dermatol. 1986;14:221–5.PubMedCrossRefGoogle Scholar
  14. Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res. 2008;49:4–11.PubMedCrossRefGoogle Scholar
  15. Farrell RE Jr. RNA methodologies: a laboratory guide for isolation and characterization. 3rd ed. Amsterdam: Academic Press; 2005. p. 33.Google Scholar
  16. Feussner I, Kühn H, Wasternack C. Do specific linoleate 13-lipoxygenases initiate beta-oxidation? FEBS Lett. 1997;406:1–5.PubMedCrossRefGoogle Scholar
  17. Fischer CL, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertz PW. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother. 2012;56:1157–61.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fischer CL, Walters KS, Drake DR, Dawson DV, Blanchette DR, Brogden KA, Wertz PW. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions. Int J Oral Sci 2013;5:130–40.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ge L, Gordon JS, Hsuan C, Stenn K, Prouty SM. Identification of the ∆-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol. 2003;120:707–14.PubMedCrossRefGoogle Scholar
  20. Gostincar C, Turk M, Gunde-Cimerman N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J Membr Biol. 2010;233:63–72.PubMedCrossRefGoogle Scholar
  21. Green SC, Stewart ME, Downing DT. Variation in sebum fatty acid composition among adult humans. J Invest Dermatol. 1984;83:114–7.PubMedCrossRefGoogle Scholar
  22. Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK. Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J. Lipid Res. 2010;51:1871–7.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Guillou H, D’andrea S, Rioux V, Jan S, Legrand P. The surprising diversity of ∆6-desaturase substrates. Biochem Soc Trans. 2004;32:86–7.PubMedCrossRefGoogle Scholar
  24. Guillou H, Rioux V, Catheline D, Thibault J-N, Bouriel M, Jan S, D’Andrea S, Legrand P. Conversion of hexadecanoic acid to hexadecenoic acid by rat ∆6-desaturase. J Lipid Res. 2003;44:450–4.PubMedCrossRefGoogle Scholar
  25. Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res. 2010;49:186–99.PubMedCrossRefGoogle Scholar
  26. Gurr MI, Harwood JL, Frayn KN. Fatty acid structure and metabolism. In: Lipid biochemistry. Oxford: Blackwell; 2002a. pp. 13–92.Google Scholar
  27. Gurr MI, Harwood JL, Frayn KN. Dietary lipids. In: Lipid Biochemistry. Oxford: Blackwell; 2002b. pp. 140–5.Google Scholar
  28. Hadley NF. Communication. The adaptive role of lipids in biological systems. New York: Wiley; 1985. p. 253.Google Scholar
  29. Hooper SN, Ackman RG. Trans-6-hexadecenoic acid and the corresponding alcohol in lipids of the sea anemone Metridium dianthus. Lipids. 1971;6:341–6.CrossRefGoogle Scholar
  30. Hyman AB, Guiducci AV. Ectopic sebaceous glands. In: Montagna W, Ellis RA, Silver AF, editors. The sebaceous glands. New York: Macmillan; 1963. pp. 78–93.Google Scholar
  31. Jared C, Antoniazzi MM, Silva JR, Freymüller E. Epidermal glands in squamata: microscopical examination of precloacal glands in Amphisbaena alba (Amphisbaenia, Amphisbaenidae). J Morphol. 1999;241:197–206.PubMedCrossRefGoogle Scholar
  32. Kihara A. Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem. 2012;152:387–95.PubMedCrossRefGoogle Scholar
  33. Knapp LA, Robson J, Waterhouse JS. Olfactory signals and the MHC: a review and a case study in Lemur catta. Am J Primatol. 2006;68:568–84.PubMedCrossRefGoogle Scholar
  34. Knutson DD. Ultrastructural observations in acne vulgaris: the normal sebaceous follicle and acne lesions. J Invest Dermatol. 1974;62:288–307.PubMedCrossRefGoogle Scholar
  35. Kohler T, Weidenmaier C, Peschel A. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol. 2009;191:4482–4.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lin M-H, Hsu F-F, Miner JH. Requirement of fatty acid transport protein 4 for development, maturation, and function of sebaceous glands in a mouse model of ichthyosis prematurity syndrome. J Biol Chem. 2013;288:3964–76.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lupi O. Ancient adaptations of human skin: why do we retain sebaceous and apocrine glands? Int J Dermatol. 2008;47:651–4.PubMedCrossRefGoogle Scholar
  38. Marekov I, Momchilova S, Grung B, Nikolova-Damyanova B. Fatty acid composition of wild mushroom species of order agaricales-examination by gas chromatography-mass spectrometry and chemometrics. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;910:54–60.PubMedCrossRefGoogle Scholar
  39. Marquardt A, Stöhr H, White K, Weber BH. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 2000;66:175–83.PubMedCrossRefGoogle Scholar
  40. Marzouki ZM, Taha AM, Gomaa KS. Fatty acid profiles of sebaceous triglycerides by capillary gas chromatography with mass-selective detection. J Chromatogr. 1988;425:11–24.PubMedCrossRefGoogle Scholar
  41. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T, Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki H, Yatoh S, Sone H, Toyoshima H, Osuga J, Yamada N. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 2007;13:1193–202.PubMedCrossRefGoogle Scholar
  42. Mauvoisin D, Mounier C. Hormonal and nutritional regulation of SCD1 gene expression. Biochimie. 2011;93:78–86.PubMedCrossRefGoogle Scholar
  43. McMahon A, Lu H, Butovich IA. A role for ELOVL4 in the mouse meibomian gland and sebocyte cell biology. Invest Ophthalmol Vis Sci. 2014;55:2832–40.PubMedCentralPubMedCrossRefGoogle Scholar
  44. McNairn AJ, Doucet Y, Demaude J, Brusadelli M, Gordon CB, Uribe-Rivera A, Lambert PF, Bouez C, Breton L, Guasch G. TGFβ signaling regulates lipogenesis in human sebaceous glands cells. BMC Dermatol. 2013;13:2.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Meesapyodsuk D, Qiu X. The front-end desaturase: structure, function, evolution and biotechnological use. Lipids. 2012;47:227–37.PubMedCrossRefGoogle Scholar
  46. Miles AEW. Sebaceous glands in the lip and cheek mucosa of man. Br Dent J. 1958;105:235–48.Google Scholar
  47. Miyazaki M, Gomez FE, Ntambi JM. Lack of stearoyl-CoA desaturase-1 function induces a palmitoyl-CoA Delta6 desaturase and represses the stearoyl-CoA desaturase-3 gene in the preputial glands of the mouse. J Lipid Res. 2002;43:2146–54.PubMedCrossRefGoogle Scholar
  48. Miyazaki M, Bruggink SM, Ntambi JM. Identification of mouse palmitoyl-coenzyme A ∆9-desaturase. J Lipid Res. 2006;47:700–4.PubMedCrossRefGoogle Scholar
  49. Montagna W, Yun JS. The skin of primates. X. The skin of the ring-tailed lemur (Lemur catta). Am J Phys Anthropol. 1962;20:95–117.PubMedCrossRefGoogle Scholar
  50. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93:229–40.PubMedCrossRefGoogle Scholar
  51. Nakamura MT, Cho HP, Clarke SD. Regulation of hepatic ∆-6 desaturase expression and its role in the polyunsaturated fatty acid inhibition of fatty acid synthase gene expression in mice. J Nutr. 2000;130:1561–5.PubMedGoogle Scholar
  52. Nakamura MT, Nara TY. Structure, function, and dietary regulation of ∆ 6, ∆ 5, and ∆ 9 desaturases. Annu Rev Nutr. 2004;24:345–76.PubMedCrossRefGoogle Scholar
  53. Nazzaro-Porro M, Passi S, Boniforti L, Belsito F. Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol. 1979;73:112–7.PubMedCrossRefGoogle Scholar
  54. Nichols PD, Volkman JK, Everitt DA. Occurence of cis-6-hexadecenoic acid and other unusual monounsaturated fatty acids in the lipids of oceanic particulate matter. Oceanol Acta. 1989;12:393–403.Google Scholar
  55. Nicolaides, N. Skin lipids: their biochemical uniqueness. Science. 1974;186:19–26.PubMedCrossRefGoogle Scholar
  56. Nicolaides N, Fu HC, Ansari MN, Rice GR. The fatty acids of wax esters and sterol esters from vernix caseosa and from human skin surface lipid. Lipids. 1972;7:506–17.PubMedCrossRefGoogle Scholar
  57. Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res. 1999;40:1549–58.PubMedGoogle Scholar
  58. Pappas A, Anthonavage M, Gordon JS. Metabolic fate and selective utilization of major fatty acids in human sebaceous gland. J Invest Dermatol. 2002;118:164–71.PubMedCrossRefGoogle Scholar
  59. Pappas A, Fantasia J, Chen T. Age and ethnic variations in sebaceous lipids. Dermatoendocrinology. 2013;5:319–24.CrossRefGoogle Scholar
  60. Park E-J, Lee AY, Park S, Kim J-H, Cho M-H. Multiple pathways are involved in palmitic acid-induced toxicity. Food Chem Toxicol. 2014;67:26–34.PubMedCrossRefGoogle Scholar
  61. Parsons JB, Yao J, Frank MW, Jackson P, Rock CO. Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from staphylococcus aureus. J Bacteriol. 2012;194:5294–304.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Pereira SL, Leonard AE, Mukerji P. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids. 2003;68:97–106.PubMedCrossRefGoogle Scholar
  63. Perkins AC, Cheng CE, Hillebrand GG, Miyamoto K, Kimball AB. Comparison of the epidemiology of acne vulgaris among Caucasian, Asian, Continental Indian and African American women. J Eur Acad Dermatol Venereol. 2011;25:1054–60.PubMedCrossRefGoogle Scholar
  64. Pollard MR, Gunstone FD, James AT, Morris LJ. Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations of rat liver. Lipids. 1979;15:306–14.CrossRefGoogle Scholar
  65. Quay WB. Structure and function of skin glands. In: Muller-Schwarze D, Mozell MM, editors. Chemical signals in vertebrates. New York: Plenum Press; 1977. pp. 1–12.CrossRefGoogle Scholar
  66. Reisner RM, Silver DZ, Puhvel M, Sternberg TH. Lipolytic activity of Corynebacterium acnes. J Invest Dermatol. 1968;51:190–6.PubMedCrossRefGoogle Scholar
  67. Richardson AJ. Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders. Lipids. 2004;39:1215–22.PubMedCrossRefGoogle Scholar
  68. Rioux V, Pédrono F, Blanchard H, Duby C, Boulier-Monthéan N, Bernard L, Beauchamp E, Catheline D, Legrand P. Trans-vaccenate is Δ13-desaturated by FADS3 in rodents. J Lipid Res. 2013;54:3438–52.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Rosenfield RL, Kentsis A, Deplewski D, Ciletti N. Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors. J Invest Dermatol. 1999;112:226–32.PubMedCrossRefGoogle Scholar
  70. Saliani N, Darabi M, Yousefi B, Baradaran B, Khaniani MS, Darabi M, Shaaker M, Mehdizadeh A, Naji T, Hashemi M. PPARγ agonist-induced alterations in Δ6-desaturase and stearoyl-CoA desaturase 1: role of MEK/ERK1/2 pathway. World J Hepatol. 2013;5:220–5.PubMedCentralPubMedGoogle Scholar
  71. Sansone A, Melchiorre M, Chatgilialoglu C, Ferreri C. Hexadecenoic fatty acid isomers: a chemical biology approach for human plasma biomarker development. Chem Res Toxicol. 2013;26:1703–9.PubMedCrossRefGoogle Scholar
  72. Sassa T, Ohno Y, Suzuki S, Nomura T, Nishioka C, Kashiwagi T, Hirayama T, Akiyama M, Taguchi R, Shimizu H, Itohara S, Kihara A. Impaired epidermal permeability barrier in mice lacking elovl1, the gene responsible for very-long-chain fatty acid production. Mol Cell Biol. 2013;33:2787–96.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Schempp C, Emde M, Wölfle U. Dermatology in the Darwin anniversary. Part 1: Evolution of the integument. J Dtsch Dermatol Ges. 2009;7:750–7.PubMedGoogle Scholar
  74. Shalita AR. Genesis of free fatty acids. J Invest Dermatol. 1974;62:332–5.PubMedCrossRefGoogle Scholar
  75. Shappell SB, Keeney DS, Zhang J, Page R, Olson SJ, Brash AR. 15-Lipoxygenase-2 expression in benign and neoplastic sebaceous glands and other cutaneous adnexa. J Invest Dermatol. 2001;117:36–43.PubMedCrossRefGoogle Scholar
  76. Shimano H. Novel qualitative aspects of tissue fatty acids related to metabolic regulation: lessons from Elovl6 knockout. Prog Lipid Res. 2012;51:267–71.PubMedCrossRefGoogle Scholar
  77. Spence MW. Monoenoic fatty-acid isomers of brain in adult and newborn rats. Biochim Biophys Acta. 1970;218:347–56.CrossRefGoogle Scholar
  78. Spencer GF, Kleiman R, Miller RW, Earle FR. Occurence of cis-6-hexadecenoic acid as the major component of Thunbergia alata seed oil. Lipids. 1971;6:712–4.CrossRefGoogle Scholar
  79. Sperling P, Ternes P, Zank TK, Heinz E. The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids. 2003;68:73–95.PubMedCrossRefGoogle Scholar
  80. Stewart ME. Sebaceous gland lipids. In: Bereiter-Hahn J, Matoltsy AG, Richards KS, editors. Biology of the Integument. 2. Vertebrates. Berlin: Springer-Verlag; 1986. pp. 824–32.CrossRefGoogle Scholar
  81. Stewart ME, Downing DT. Chemistry and function of mammalian sebaceous lipids. Adv Lipid Res. 1991;24:263–301.PubMedCrossRefGoogle Scholar
  82. Stewart ME, Grahek MO, Cambier LS, Wertz PW, Downing DT. Dilutional effect of increased sebaceous gland activity on the proportion of linoleic acid in sebaceous wax esters and in epidermal acylceramides. J Invest Dermatol. 1986;87:733–6.PubMedCrossRefGoogle Scholar
  83. Strauss JS, Pochi PE, Whitman EN. Suppression of sebaceous gland activity with eicosa-5:8:11:14-tetraynoic acid. J Invest Dermatol. 1967;48:492–3.PubMedGoogle Scholar
  84. Takigawa H, Nakagawa H, Kuzukawa M, Mori H, Imokawa G. Deficient production of hexadecenoic acid in the skin is associated in part with the vulnerability of atopic dermatitis patients to colonization by Staphylococcus aureus. Dermatology. 2005;211:240–8.PubMedCrossRefGoogle Scholar
  85. Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA, Liu J, Chandra D, Traag J, Klein RD, Fischer SM, Chopra D, Shen J, Zhau HE, Chung LWK, Tang DG. Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem. 2002;277:16189–201.PubMedCrossRefGoogle Scholar
  86. Thody AJ, Shuster S. Control and function of sebaceous glands. Physiol Rev. 1989;69:383–416.PubMedGoogle Scholar
  87. Tourdot BE, Ahmed I, Holinstat M. The emerging role of oxylipins in thrombosis and diabetes. Front Pharmacol. 2014;4(176):1–9.Google Scholar
  88. Turkish AR, Henneberry AL, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano AM, Billheimer JT, Sturley SL. Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem. 2005;280:14755–64.PubMedCrossRefGoogle Scholar
  89. Tvrdik P, Westerberg R, Silve S, Asadi A, Jakobsson A, Cannon B, Loison G, Jacobsson A. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol. 2000;149:707–18.PubMedCentralPubMedCrossRefGoogle Scholar
  90. Umeda S, Ayyagari R, Suzuki MT, Ono F, Iwata F, Fujiki K, Kanai A, Takada Y, Yoshikawa Y, Tanaka Y, Iwata T. Molecular cloning of ELOVL4 gene from cynomolgus monkey (Macaca fascicularis). Exp Anim. 2003;52:129–35.PubMedCrossRefGoogle Scholar
  91. Wakimoto K, Chiba H, Michibata H, Seishima M, Kawasaki S, Okubo K, Mitsui H, Torii H, Imai Y. A novel diacylglycerol acyltransferase (DGAT2) is decreased in human psoriatic skin and increased in diabetic mice. Biochem. Biophys. Res. Commun. 2003;310:296–302.PubMedCrossRefGoogle Scholar
  92. Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump D.B. Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J. Lipid Res. 2005;46:706–15.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Watts JL, Browse J. A palmitoyl-CoA-Specific ∆9 fatty acid desaturase from Caenorhabditis elegans. Biochem Bioph Res Co. 2000;272:263–9.CrossRefGoogle Scholar
  94. Welle S, Bhatt K, Thornton.CA. Inventory of high-abundance mRNAs in skeletal muscle of normal men. Genome Res. 1999;9:506–13.PubMedCentralPubMedGoogle Scholar
  95. Wille JJ, Kydonieus A. Palmitoleic acid isomer (C16:1∆6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacol Appl Skin Physiol. 2003;16:176–87.PubMedCrossRefGoogle Scholar
  96. Wille JJ, Drake D, Wertz PW. Identification of cis-palmitoleic acid as the active antimicrobial in human skin sebum. J Invest Dermatol. 1997;108:677.Google Scholar
  97. Westerberg R, Tvrdik P, Undén A-B, Månsson J-E, Norlén L, Jakobsson A, Holleran WH, Elias PM, Asadi A, Flodby P, Toftgård R, Capecchi MR, Jacobsson A. Role for ELOVL3 and fatty acid chain length in development of hair and skin function. J Biol Chem. 2004;279:5621–9.PubMedCrossRefGoogle Scholar
  98. Yamamoto A, Serizawa S, Ito M, Sato Y. Effect of aging on sebaceous gland activity and on the fatty acid composition of wax esters. J Invest Dermatol. 1987;89:507–12.PubMedCrossRefGoogle Scholar
  99. Zheng Y, Prouty SM, Harmon A, Sundberg JP, Stenn KS, Parimoo S. Scd3-a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. Genomics. 2001;71:182–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.1075 BRB II/III, Department of Dermatology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.The Johnson & Johnson Skin Research CenterCPPW, a division of Johnson & Johnson Consumer Companies, Inc.SkillmanUSA

Personalised recommendations