Skip to main content

Weak Splittings of Quotients of Drinfeld and Heisenberg Doubles

  • Chapter
  • First Online:
Developments and Retrospectives in Lie Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 37))

  • 916 Accesses

Abstract

We investigate the fine structure of the symplectic foliations of Poisson homogeneous spaces. Two general results are proved for weak splittings of surjective Poisson submersions from Heisenberg and Drinfeld doubles. The implications of these results are that the torus orbits of symplectic leaves of the quotients can be explicitly realized as Poisson–Dirac submanifolds of the torus orbits of the doubles. The results have a wide range of applications to many families of real and complex Poisson structures on flag varieties. Their torus orbits of leaves recover important families of varieties such as the open Richardson varieties.

The author was supported in part by NSF grants DMS-1001632 and DMS-1303036.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. A. Belavin and V. G. Drinfeld, Triangular equations and simple Lie algebras, Math. Phys. Rev. 4 (1984), 93–165.

    MATH  MathSciNet  Google Scholar 

  2. A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras III, Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1–52.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Berenstein and J. Greenstein, Quantum folding, Int. Math. Res. Not. IMRN 2011, no. 21, 4821–4883.

    Google Scholar 

  4. S. Billey and I. Coskun, Singularities of generalized Richardson varieties, Comm. Algebra 40 (2012), 1466–1495.

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Chevalier, Algèbres amassées et positivité totale, Ph.D. thesis, Univ. of Caen, 2012.

    Google Scholar 

  6. M. Crainic and R. L. Fernandes, Integrability of Poisson brackets, J. Diff. Geom. 66 (2004), 71–137.

    MATH  MathSciNet  Google Scholar 

  7. C. De Concini and C. Procesi, Complete symmetric varieties, in: Invariant theory (Montecatini, 1982), Lect. Notes Math. 996 (1983), 1–44.

    Article  Google Scholar 

  8. P. Delorme, Classification des triples de Manin pour les algèbres de Lie réductives complex, with an appendix by G. Macey, J. Algebra 246 (2001), 97–174.

    Google Scholar 

  9. V. G. Drinfeld, On Poisson homogeneous spaces of Poisson–Lie groups, Theor. and Math. Phys. 95 (1993), 524–525.

    Article  MathSciNet  Google Scholar 

  10. S. Evens and J.-H. Lu, On the variety of Lagrangian subalgebras. I, Ann. Sci. École Norm. Sup. (4), 34 (2001), 631–668.

    Google Scholar 

  11. S. Evens and J.-H. Lu, Poisson geometry of the Grothendieck resolution of a complex semisimple Lie group, Mosc. Math. J. 7 (2007), 613–642.

    MATH  MathSciNet  Google Scholar 

  12. Ph. Foth and J.-H. Lu, Poisson structures on complex flag manifolds associated with real forms, Trans. Amer. Math. Soc. 358 (2006), 1705–1714.

    Google Scholar 

  13. T. J. Hodges and T. Levasseur, Primitive ideals of \(\mathbb{C}_{q}[\mathrm{SL}(3)]\), Comm. Math. Phys. 156 (1993), 581–605.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899–934

    MATH  MathSciNet  Google Scholar 

  15. M. Gekhtman, M. Shapiro, and A. Vainshtein, Exotic cluster structures onSLn : the Cremmer–Gervais case, preprint arXiv:1307.1020.

    Google Scholar 

  16. K. R. Goodearl and M. Yakimov, Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc. 361 (2009), 5753–5780.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Joseph, On the prime and primitive spectra of the algebra of functions on a quantum group, J. Algebra 169 (1994), 441–511.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Progress in Math. 140, Birkhäuser, Cambridge, 2002.

    Google Scholar 

  19. A. Knutson, T. Lam, and D. E. Speyer, Projections of Richardson varieties, J. Reine Angew. Math. 687 (2014), 133–157.

    MATH  MathSciNet  Google Scholar 

  20. M. Kogan and A. Zelevinsky, On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups, Int. Math. Res. Not. 2002, no. 32, 1685–1702.

    Google Scholar 

  21. B. Leclerc, Cluster structures on strata of flag varieties, preprint arXiv:1402.4435.

    Google Scholar 

  22. J.-H. Lu and M. Yakimov, Group orbits and regular partitions of Poisson manifolds, Comm. Math. Phys. 283 (2008), 729–748.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Muller and D. E. Speyer, Cluster algebras of Grassmannians are locally acyclic, preprint arXiv:1401.5137.

    Google Scholar 

  24. A. Postnikov, Total positivity, Grassmannians, and networks, preprint arXiv:math/0609764.

    Google Scholar 

  25. K. Rietsch and L. Williams, The totally nonnegative part of G∕P is a CW complex, Transform. Groups 13 (2008), 839–853.

    Article  MATH  MathSciNet  Google Scholar 

  26. I. Vaisman, Dirac submanifolds of Jacobi manifolds, in: The breadth of symplectic and Poisson geometry, 603–622, Progr. Math. 232, Birkhäuser Boston, Cambridge, MA, 2005.

    Google Scholar 

  27. B. Webster and M. Yakimov, A Deodhar-type stratification on the double flag variety, Transform. Groups 12 (2007), 769–785.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Xu, Dirac submanifolds and Poisson involutions, Ann. Sci. École Norm. Sup. (4) 36 (2003), 403–430.

    Google Scholar 

  29. M. Yakimov, Symplectic leaves of complex reductive Poisson–Lie groups, Duke Math. J. 112 (2002), 453–509.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Yakimov, A classification of H-primes of quantum partial flag varieties, Proc. Amer. Math. Soc. 138 (2010), 1249–1261.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Bernard Leclerc and Jiang-Hua Lu for their valuable comments and suggestions on the first version of the preprint. I am also grateful to I. Dimitrov, G. Mason, S. Montgomery, I. Penkov, V.S. Varadarajan, and J. Wolf for the opportunity to present these and related results at the Lie theory meetings at UCB, UCLA, UCSC, and USC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milen Yakimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yakimov, M. (2014). Weak Splittings of Quotients of Drinfeld and Heisenberg Doubles. In: Mason, G., Penkov, I., Wolf, J. (eds) Developments and Retrospectives in Lie Theory. Developments in Mathematics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-09934-7_9

Download citation

Publish with us

Policies and ethics