Skip to main content
  • 1033 Accesses

Abstract

It is a trend that tunable matching networks are expected to play an important role in the realization of adaptive and reconfigurable radio front-end architectures. One particular example of using tunable impedance matching networks is the compensation of mobile phone antenna impedance mismatch loss caused by phone user proximity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung-hoon O, Song H et al (2007) Automatic antenna tuning unit for software-defined and cognitive radio. In: Antennas and propagation society international symposium, 2007 IEEE, pp. 85–88

    Google Scholar 

  2. Fu JS, Zhu XA et al (2008) A ferroelectric-based impedance tuner for adaptive matching applications. In: Microwave Symposium Digest, 2008 I.E. MTT-S International, pp. 955–958

    Google Scholar 

  3. Bezooijen A, de Jongh MA et al (2010) Adaptive impedance matching techniques for controlling L-networks. IEEE Trans Circuits Syst I Regul Pap 57(2):495–505

    Article  MathSciNet  Google Scholar 

  4. de Brito KB, de Lima RN (2007) Impedance network for an automatic impedance matching system. In Microwave Conference, 2007, APMC 2007, Asia-Pacific, pp. 1–4

    Google Scholar 

  5. de Mingo J, Valdovinos A et al (2004) An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system. IEEE Trans Microw Theory Tech 52:489–497

    Article  Google Scholar 

  6. Moritz JR, Sun Y (2000) Frequency agile antenna tuning and matching. HF Systems and Techniques, 8th International Conf., pp. 169–174

    Google Scholar 

  7. Finn JS (2007) Adaptive impedance matching module control architecture. Patent Application Publication, no. US 2007/0197180

    Google Scholar 

  8. Sjoblom P, Sjoland H (2005) An adaptive impedance tuning CMOS circuit for ISM 2.4-GHz band. IEEE Trans Circuits Syst I Regul Pap 52:1115–1124

    Article  Google Scholar 

  9. Gu Q, De Luis JR et al (2011) A analysis algorithm for P1-network impedance tuners. IEEE Trans Circuits Syst I 58(12):2894–2905

    Article  MathSciNet  Google Scholar 

  10. Gu Q, Morris AS (2013) A new method for matching network adaptive control. IEEE Trans MTT 61(1):585–595

    Article  Google Scholar 

  11. Rea R (2006) The Yin-Yang of matching: Part 1: Basic matching concepts. pp. 16–25. Available: www.highfrequencyelectronics.com

  12. AWR: Microwave Office 2009 [Online]. Available: http://web.awr-corp.com

  13. Thompson M, Fidler JK (2004) Determination of the impedance matching domain of impedance matching networks. IEEE Trans Circuits Syst I Regul Pap 51:2098–2106

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: MWO Script of Single Frequency Tuning Algorithm

figure afigure afigure afigure afigure afigure a

Appendix 2: Script of Duplex Pair Frequency Tuning Approach

figure gfigure gfigure gfigure gfigure gfigure gfigure gfigure g

Appendix 3: Script of Frequency Band Tuning Approach

figure ofigure ofigure ofigure ofigure ofigure o

Appendix 4: Formula Derivations of Sect. 6.2

6.4.1 Derivation of Formulas (6.14)–(6.17)

The derivation of equations of (6.14)–(6.17) needs to be split into two cases, i.e., R L  < R o and R L  > R o , then the derivation can be done by means of two different configurations of the equivalent circuit topologies. For (6.14) and (6.15), our derivation is based on the equivalent circuit configuration shown in Fig. 6.37. C 2 in the pi-network tuner has been absorbed by X e and R e as given in (6.11a and 6.11b).

Fig. 6.37
figure 37

Equivalent circuit for deriving (6.14) and (6.15)

The impedance on the left side of the dashed line is given by,

$$ {Z}_{left}=\frac{1}{G_o+j{B}_{C1}}=\frac{G_0}{G_o^2+{B}_{C1}^2}-j\frac{B_{C1}}{G_o^2+{B}_{C1}^2} $$
(A4.1)

In the conjugation match condition, we should have (A4.2) and (A4.3) satisfied.

$$ \frac{G_0}{G_o^2+{B}_{C1}^2}={R}_e $$
(A4.2)
$$ \frac{B_{C1}}{G_o^2+{B}_{C1}^2}={X}_e+2\pi f\cdot {L}_e $$
(A4.3)

where B C1 = 2πf ⋅ C 1. From (6.59), we obtain (6.14) and from (6.60) we derive (6.10) as,

$$ \begin{array}{c}{C}_1=\frac{1}{2\pi f}{B}_{C1}=\frac{1}{2\pi f}\sqrt{\frac{G_o}{R_e}-{G}_o^2}=\\ {}=\frac{1}{2\pi f}\sqrt{G_o\left({G}_e-{G}_o\right)}=\sqrt{\frac{1}{R_o}\left(\frac{1}{R_e}-\frac{1}{R_o}\right)}\end{array} $$
(6.14)
$$ \begin{array}{c}{L}_e=\frac{1}{2\pi f}\left(\frac{B_{C1}}{G_o^2+{B}_{C1}^2}-{X}_e\right)=\frac{1}{2\pi f}\left(\frac{R_e}{G_o}\sqrt{\frac{G_o}{R_e}-{G}_o^2}-{X}_e\right)=\\ {}=\frac{1}{2\pi f}\left(\sqrt{R_e\left({R}_o-{R}_e\right)}-{X}_e\right)\end{array} $$
(6.15)

In the derivation of (6.16) and (6.17), the equivalent circuit as depicted in Fig. 6.38 is used. For R L  > R o , C 1 is set to minimum C min. Z left and Z right in Fig. 6.38 can be expressed, respectively, as

Fig. 6.38
figure 38

Equivalent circuit for deriving (6.16) and (6.17)

$$ {Z}_{left}=\frac{1}{G_o+j{B}_{C1 \min }}=\frac{R_o}{1+{R}_o^2{B}_{C1 \min}^2}-j\frac{B_{C1 \min }{R}_o^2}{1+{R}_o^2{B}_{C1 \min}^2} $$
(A4.4)

and

$$ \begin{array}{l}{Z}_{right}=\frac{1}{G_L+j\left({B}_{C2}+{B}_L\right)}\\ {}=\frac{R_L}{1+{R}_L^2{\left({B}_{C2}+{B}_L\right)}^2}-j\frac{R_L^2\left({B}_{C2}+{B}_L\right)}{1+{R}_L^2{\left({B}_{C2}+{B}_L\right)}^2}\end{array} $$
(A4.5)

where B C1 min = 2πf ⋅ C 1,min and B C2 = 2πf ⋅ C 2

In conjugation match condition, we should have the real part of (A4.4) equal to

$$ \frac{R_o}{1+{R}_o^2{B}_{C1 \min}^2}=\frac{R_L}{1+{R}_L^2{\left({B}_{C2}+{B}_L\right)}^2} $$
(A4.6)

and the imaginary part of (A4.4) without the negative sign equal to the following expression

$$ \frac{B_{C1 \min }{R}_o^2}{1+{R}_o^2{B}_{C1 \min}^2}=2\pi f\cdot {L}_e-\frac{R_L^2\left({B}_{C2}+{B}_L\right)}{1+{R}_L^2{\left({B}_{C2}+{B}_L\right)}^2} $$
(A4.7)

From (A4.6), after manipulating we derive (6.16)

$$ {C}_2=\frac{1}{2\pi f}\left(\sqrt{\frac{G_L}{R_o}\left(1+{R}_o^2{B}_{C1, \min}^2\right)-{G}_L^2}-{B}_L\right) $$
(6.16)

and from (A4.7) and (6.16) we obtain (6.17)

$$ {L}_e=\frac{1}{2\pi f}\left(\frac{\sqrt{\frac{G_L}{R_o}\left(1+{R}_o^2{B}_{C1, \min}^2\right)-{G}_L^2}}{\frac{G_L}{R_o}\left(1+{R}_o^2{B}_{C1, \min}^2\right)}+\frac{R_o^2{B}_{C1, \min }}{1+{R}_o^2{B}_{C1, \min}^2}\right) $$
(6.17)

6.4.2 Derivation of Input Reflection Coefficient

The input reflection coefficient Γin is defined as

$$ {\Gamma}_{in}=\frac{Z_{in}-{R}_o}{Z_{in}+{R}_o} $$
(A4.8)

where Z in is the input impedance as shown in Fig. 6.39, and it can be expressed as

Fig. 6.39
figure 39

Equivalent circuit for deriving Γin

$$ {Z}_{in}=\frac{1}{j{B}_{C1}+1/{Z}_x}=\frac{1}{j{B}_{C1}+{Y}_x} $$
(A4.9)

where B C1 = 2πf ⋅ C 1 and Yx is expressed as

$$ {Y}_x=\frac{1}{Z_x}=\frac{G_L+j\left({B}_{C2}+{B}_L\right)}{1-{X}_{Le}\left({B}_{C2}+{B}_L\right)+j{G}_L{X}_{Le}} $$
(A4.10)

where B C2 = 2πf ⋅ C 2 and X Le  = 2πf ⋅ L e . Substituting (A4.10) to (A4.9), we obtain Zin to be

$$ {Z}_{in}=\frac{1-{X}_{Le}\left({B}_{C2}+{B}_L\right)+j{G}_L{X}_{Le}}{G_L\left(1-X{}_{Le}B_{C1}\right)+j\left[{B}_{C1}+\left({B}_{C2}+{B}_L\right)\left(1-{X}_{Le}{B}_{C1}\right)\right]} $$
(A4.11)

Finally, plugging (A4.11) into (A4.8), we derive the input reflection coefficient Γin (6.18) to be expressed as,

$$ {\Gamma}_{in}=\frac{G_o\left[1-{X}_{Le}\left({B}_L+{B}_{C2x}\right)\right]-{G}_L\left(1-{X}_{Le}{B}_{C1x}\right)+j\left[{G}_o{G}_L{X}_{Le}-{B}_{C1x}-\left({B}_{C2x}+{B}_L\right)\left(1-{X}_{Le}{B}_{C1x}\right)\right]}{G_o\left[1-{X}_{Le}\left({B}_L+{B}_{C2x}\right)\right]+{G}_L\left(1-{X}_{Le}{B}_{C1x}\right)+j\left[{G}_o{G}_L{X}_{Le}+{B}_{C1x}+\left({B}_{C2x}+{B}_L\right)\left(1-{X}_{Le}{B}_{C1x}\right)\right]} $$
(6.18)

Appendix 5: Matlab Code for Tuning Algorithm

figure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure ufigure u

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, Q. (2015). Matching Network Tuning and Control Methods. In: RF Tunable Devices and Subsystems: Methods of Modeling, Analysis, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-09924-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09924-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09923-1

  • Online ISBN: 978-3-319-09924-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics