Detecting Stay Areas from a User’s Mobile Phone Data for Urban Computing

  • Hui Wang
  • Ning Zhong
  • Zhisheng Huang
  • Jiajin Huang
  • Erzhong Zhou
  • Runqiang Du
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8610)


Nowadays, mobile phones are often used as an attractive option for large-scale sensing of human behavior, providing a source of real and reliable data for urban computing. As it is known to all, a user’s behavior often happened at some places where the user stayed over a certain time interval for a trip. For understanding a user’s behavior effectively, we need to detect the places where the user stayed over a certain time interval and we call these places stay areas. In this paper, we propose a method for detecting the stay areas from a user’s mobile phone data. The proposed method can tackle the complicated situations that the general method cannot deal with effectively. Through experimental evaluation, the proposed method is shown to deliver excellent performance.


Stay Area Mobile Phone Data Urban Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zheng, Y., Zhou, X.: Computing with Spatial Trajectories. Springer-Verlag New York Inc. (2011)Google Scholar
  2. 2.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.Z.: T-Drive: Enhancing Driving Directions with Taxi Drivers’ Intelligence. IEEE Transactions on Knowledge and Data Engineering 25(1), 220–232 (2011)CrossRefGoogle Scholar
  3. 3.
    Wei, L.-Y., Zheng, Y., Peng, W.-C.: Constructing Popular Routes from Uncertain Trajectories. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 195–203. ACM (2012)Google Scholar
  4. 4.
    Chen, Z.B., Shen, H.T., Zhou, X.F.: Discovering Popular Routes from Trajectories. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, pp. 900–911. IEEE Computer Society (2011)Google Scholar
  5. 5.
    Zheng, Y., Zhang, L., Ma, Z., Xie, X., Ma, W.Y.: Recommending Friends and Locations Based on Individual Location History. ACM Transactions on the Web 5(1), 1–44 (2011)CrossRefMATHGoogle Scholar
  6. 6.
    Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining User Similarity Based on Location History. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10. ACM (2008)Google Scholar
  7. 7.
    Pang, L.X., Chawla, S., Liu, W., Zheng, Y.: On Detection of Emerging Anomalous Traffic Patterns Using GPS Data. Data & Knowledge Engineering 87, 357–373 (2013)CrossRefGoogle Scholar
  8. 8.
    Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Peng, W.C., Porta, T.F.L.: A Framework of Traveling Companion Discovery on Trajectory Data Streams. ACM Transactions on Intelligent Systems and Technology 5(1), 3 (2013)CrossRefGoogle Scholar
  9. 9.
    Xiao, X., Zheng, Y., Luo, Q., Xie, X.: Inferring social ties between users with human location history. Journal of Ambient Intelligence and Humanized Computing 5(1), 3–19 (2014)CrossRefGoogle Scholar
  10. 10.
    Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving Origin Destination Data from A Mobile Phone Network. IET Intelligent Transport Systems 1(1), 15–26 (2007)CrossRefGoogle Scholar
  11. 11.
    Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating Origin-Destination Flows Using Mobile Phone Location Data. IEEE Pervasive Computing 10(4), 36–44 (2011)CrossRefGoogle Scholar
  12. 12.
    Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Transactions on Intelligent Transportation Systems 12(1), 141–151 (2011)CrossRefGoogle Scholar
  13. 13.
    Ying, J.J.-C., Lu, E.H.-C., Lee, W.-C.: Mining User Similarity from Semantic Trajectories. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, pp. 19–26. ACM (2010)Google Scholar
  14. 14.
    Ying, J.J.-C., Lee, W.-C., Weng, T.-C.: Semantic Trajectory Mining for Location Prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 34–43. ACM (2011)Google Scholar
  15. 15.
    Lu, E.H.-C., Tseng, V.S., Yu, P.S.: Mining Cluster-Based Temporal Mobile Sequential Patterns in Location-Based Service Environments. IEEE Transactions on Knowledge and Data Engineering 23(6), 914–927 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, F., Janssens, D., Wets, G., Cools, M.: Annotating Mobile Phone Location Data with Activity Purposes Using Machine Learning Algorithms. Expert Systems with Applications 40(8), 3299–3311 (2013)CrossRefGoogle Scholar
  17. 17.
    Du, R., Huang, J., Huang, Z., Wang, H., Zhong, N.: A System to Generate Mobile Data Based on Real User Behavior. In: Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE Workshops 2013. LNCS, vol. 8182, pp. 48–61. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hui Wang
    • 1
  • Ning Zhong
    • 1
    • 2
  • Zhisheng Huang
    • 1
    • 3
  • Jiajin Huang
    • 1
  • Erzhong Zhou
    • 1
  • Runqiang Du
    • 1
  1. 1.International WIC InstituteBeijing University of TechnologyBeijingChina
  2. 2.Dept. of Life Science and InformaticsMaebashi Institute of TechnologyMaebashiJapan
  3. 3.Dept. of Computer ScienceVrije University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations