Advertisement

Variable Order Fractional Kalman Filters for Estimation over Lossy Network

  • Dominik Sierociuk
  • Pawel Ziubinski
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 320)

Abstract

This paper presents generalization of Fractional Variable Order Kalman Filter (FvoKF) and Improved Fractional Variable Order Kalman Filter (ExFvoKF) algorithms for estimation of fractional variable order state-space systems over lossy network. This generalization is obtained for a state-space system based on one type of fractional variable order difference (\(\mathcal{A}\)-type) and assuming the knowledge about packets losing. The generalization of ExFKF algorithm based on the infinite dimensional form of a linear discrete fractional variable order state-space system and measurements equation augmentation. It required less restrictive assumptions than derivation of FKF. Finally, numerical simulations of proposed algorithms are presented and compared.

Keywords

Packet Loss Kalman Filter Fractional Order Variable Order Packet Dropout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shi, L., Xie, L., Murray, R.: Kalman filtering over a packet-delaying network: a probabilistic approach. Automatica 45, 2134–2140 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Moayedi, M., Soh, Y., Foo, Y.: Optimal kalman filtering with random sensor delays, packet dropouts and missing measurements. In: Proceedings of the American Control Conference (ACC 2009), pp. 3405–3410 (2009)Google Scholar
  3. 3.
    Epstein, M., Shi, L., Tiwari, A., Murray, R.: Probabilistic performance of state estimation across a lossy network. Automatica 44(12), 3046–3053 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Matveev, A.S., Savkin, A.V.: Estimation and Control over Communication Networks. Birkhäuser (2009)Google Scholar
  5. 5.
    Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculus. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371 1990 (2013)Google Scholar
  6. 6.
    Sheng, H., Chen, Y., Qiu, T.: Signal Processing Fractional Processes and Fractional-Order Signal Processing. Springer, London (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sheng, H., Sun, H., Chen, Y., Qiu, T.: Synthesis of multifractional gaussian noises based on variable-order fractional operators. Signal Processing 91(7), 1645–1650 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Sierociuk, D., Dzieliński, A.: Fractional Kalman filter algorithm for states, parameters and order of fractional system estimation. Applied Mathematics and Computer Science 16(1), 129–140 (2006)MathSciNetGoogle Scholar
  9. 9.
    Sierociuk, D., Tejado, I., Vinagre, B.M.: Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Processing 91(3, SI), 542–552 (2011)Google Scholar
  10. 10.
    Sierociuk, D., Ziubinski, P.: Fractional order estimation schemes for fractional and integer order systems with constant and variable fractional order colored noise. Circuits, Systems, and Signal Processing (accepted to 2014)Google Scholar
  11. 11.
    Ramirez, L., Coimbra, C.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D-Nonlinear Phenomena 240(13), 1111–1118 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ostalczyk, P., Rybicki, T.: Variable-fractional-order dead-beat control of an electromagnetic servo. Journal of Vibration and Control 14(9-10), 1457–1471 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order derivative – equivalent switching strategy, duality, and analog modeling. Circuits, Systems, and Signal Processing (accepted to 2014)Google Scholar
  14. 14.
    Sierociuk, D., Malesza, W., Macias, M.: Switching scheme, equivalence, and analog validation of the alternative fractional variable-order derivative definition. In: Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, December 10-13 (2013)Google Scholar
  15. 15.
    Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dynamics 29(1-4), 57–98 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Valerio, D., da Costa, J.S.: Variable-order fractional derivatives and their numerical approximations. Signal Processing 91(3, SI), 470–483 (2011)Google Scholar
  17. 17.
    Sierociuk, D.: System properties of fractional variable order discrete state-space system. In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 643–648 (2012)Google Scholar
  18. 18.
    Dzielinski, A., Sierociuk, D.: Stability of discrete fractional order state-space systems. JVC/Journal of Vibration and Control 14(9-10), 1543–1556 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Dzielinski, A., Sierociuk, D.: Reachability, controllability and observability of the fractional order discrete statespace system. In: Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR 2007, Szczecin, Poland, pp. 129–134 (2007)Google Scholar
  20. 20.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control 49, 1453–1464 (2004)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Shi, L., Epstein, M., Murray, R.M.: Kalman filtering over a packet dropping network: A probabilistic approach. In: Proceedings of 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam, ICARCV 2008, pp. 41–46 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations