Advertisement

Reconstruction of the Thermal Conductivity Coefficient in the Time Fractional Diffusion Equation

  • Rafał Brociek
  • Damian Słota
  • Roman Wituła
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 320)

Abstract

This paper describes reconstruction of the thermal conductivity coefficient in the time fractional diffusion equation. Additional information for the considered inverse problem was given by the temperature measurements at selected points of the domain. The direct problem was solved by using the finite difference method. To minimize functional defining the error of approximate solution the Fibonacci search algorithm was used.

Keywords

inverse problem time fractional diffusion equation identification thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardakani, M., Khodadad, M.: Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm. Inverse Probl. Sci. Eng. 17, 855–870 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Battaglia, J.L., Cois, O., Puigsegur, L., Oustaloup, A.: Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transfer 44, 2671–2680 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Borukhov, V.T., Tsurko, V.A., Zayats, G.M.: The functional identification approach for numerical reconstruction of the temperature-dependent thermal-conductivity coefficient. Int. J. Heat Mass Transfer 52, 232–238 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brociek, R.: Implicite finite difference metod for time fractional diffusion equations with mixed boundary conditions. Zesz. Nauk. PŚ., Mat. Stosow. 4 (in press 2014)Google Scholar
  5. 5.
    Carpinteri, A., Mainardi, F.: Fractal and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)CrossRefGoogle Scholar
  6. 6.
    Chang, C.L., Chang, M.: Inverse estimation of the thermal conductivity in a one-dimensional domain by Taylor series approach. Heat Transfer Engineering 29, 830–838 (2008)CrossRefGoogle Scholar
  7. 7.
    Czél, B., Gróf, G.: Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes. Int. J. Heat Mass Transfer 55, 4254–4263 (2012)CrossRefGoogle Scholar
  8. 8.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Divo, E., Kassab, A., Rodriguez, F.: Characterization of space dependent thermal conductivity with a BEM-based genetic algorithm. Numer. Heat Transfer A(37), 845–875 (2000)Google Scholar
  10. 10.
    Dou, F., Hon, Y.: Numerical computation for backward time-fractional diffusion equation. Eng. Anal. Bound. Elem. 40, 138–146 (2014)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gabano, J.D., Poinot, T.: Fractional modelling and identification of thermal systems. Signal Processing 91, 531–541 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gabano, J.D., Poinot, T.: Estimation of thermal parameters using fractional modelling. Signal Processing 91, 938–948 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Imani, A., Ranjbar, A.A., Esmkhani, M.: Simultaneous estimation of temperature-dependent thermal conductivity and heat capacity based on modified genetic algorithm. Inverse Probl. Sci. Eng. 14, 767–783 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kanca, F., Ismailov, M.: The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data. Inverse Probl. Sci. Eng. 20, 463–476 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Klafter, J., Lim, S., Metzler, R.: Fractional dynamics. Resent advances. World Scientific, New Jersey (2012)zbMATHGoogle Scholar
  16. 16.
    Kusiak, J., Danielewska-Tułecka, A., Oprocha, P.: Optimization. PWN, Warszawa (2009) (in Polish)Google Scholar
  17. 17.
    Majchrzak, E., Mendakiewicz, J., Piasecka-Belkhayat, A.: Algorithm of the mould thermal parameters identification in the system casting–mould–environment. J. Mater. Proc. Tech. 164-165, 1544–1549 (2008)CrossRefGoogle Scholar
  18. 18.
    Mitkowski, W., Kacprzyk, J., Baranowski, J.: Advances in the Theory and Applications of Non-integer Order Systems. Springer Inter. Publ., Cham (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mitkowski, W., Obrączka, A.: Simple identification of fractional differential equation. Solid State Phenomena 180, 331–338 (2012)CrossRefGoogle Scholar
  20. 20.
    Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53, 1492–1501 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Murio, D.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56, 2371–2381 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Murio, D.: Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Probl. Sci. Eng. 17, 229–243 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Murio, D., Mejia, C.: Generalized time fractional IHCP with Caputo fractional derivatives. J. Phys. Conf. Ser. 135, 12074 (2008)CrossRefGoogle Scholar
  25. 25.
    Obrączka, A., Kowalski, J.: Modeling of the heat distribution in ceramic materials by using the fractional differential equations. In: Szczygieł, M. (ed.) Proceedings of the XV Jubilee Symposium, Basic Problems in Power Electronics, Electromechanics and Mechatronics, PPEEm 2012, Gliwice, pp. 132–133 (2012) (in Polish)Google Scholar
  26. 26.
    Obrączka, A., Mitkowski, W.: The comparison of parameter identification methods for fractional partial differential equation. Solid State Phenomena 210, 265–270 (2014)CrossRefGoogle Scholar
  27. 27.
    Orain, S., Scudeller, Y., Garcia, S., Brousse, T.: Use of genetic algorithms for the simultaneous estimation of thin film thermal conductivity and contact resistances. Int. J. Heat Mass Transfer 44, 3973–3984 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  29. 29.
    Poinot, T., Trigeassou, J.C.: Identification of fractional systems using an output-error technique. Nonlinear Dynamics 38, 133–154 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Rabsztyn, S., Słota, D., Wituła, R.: Gamma and Beta Functions, vol. 1. Wyd. Pol. Śl, Gliwice (2012) (in Polish) Google Scholar
  31. 31.
    Szczygieł, I.: Analysis of Inverse Heat Convection Problems. Zesz. Nauk. PŚ., Ener. 140, 1–141 (2005) (in Polish)Google Scholar
  32. 32.
    Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49, 926–935 (2013)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of MathematicsSilesian University of TechnologyGliwicePoland

Personalised recommendations