Non-integer Order Filtration of Electromyographic Signals

  • Jerzy Baranowski
  • Paweł Piątek
  • Aleksandra Kawala-Janik
  • Marta Zagórowska
  • Waldemar Bauer
  • Tomasz Dziwiński
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 320)


Electromyography (EMG) is recently of growing interest of doctors and scientists as it provides a tool for muscle performance verification. In this paper a new approach to EMG signal processing is considered. This approach is non-integer order filtering. Bi-fractional filter is designed and filtering occurs through exact computation.


Muscle Performance Integer Order Motor Unit Action Potential Electromyographic Signal Apply Soft Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkan, A., Gunay, M.: Identification of emg signals using discriminant analysis and svm classifier. Expert Systems with Applications 39(1), 44–47 (2012)CrossRefGoogle Scholar
  2. 2.
    Amsuss, S., Gobel, P., Jiang, N., Graimann, B., Paredes, L., Self-correcting, D.F.D.: pattern recognition system of surface emg signals for upper limb prosthesis control. IEEE Transactions on Biomedical Engineering PP(99), 1–10 (2013)Google Scholar
  3. 3.
    Annett, M.: Left-handedness as a function of sex, maternal versus paternal inheritance and report bias. Behavior Genetics 29, 103–114 (1999)CrossRefGoogle Scholar
  4. 4.
    Baranowski, J., Piątek, P., Bauer, W., Dziwiński, T., Zagórowska, M.: Bi-fractional filters, part 2: Right half-plane case. In: 2014 19th International Conference on Methods and Models in Automation and Robotics, MMAR (accepted, 2014)Google Scholar
  5. 5.
    Baranowski, J., Zagórowska, M., Bania, P., Bauer, W., Dziwiński, T., Piątek, P.: Impulse response approximation method for bi-fractional filter. In: 2014 19th International Conference on Methods and Models in Automation and Robotics, MMAR (accepted, 2014)Google Scholar
  6. 6.
    Borysiuk, Z., Zmarzly, D.: Surface electromyography (semg) as an innovative system of research work on information processes in sport. Polish Journal of Sports Medicine 22(1), 59–66 (2006)Google Scholar
  7. 7.
    Castiello, U., Stelmach, G.E.: Generalized representation of handwriting: Evidence of effector independence. Acta Psychologica 82(1-3), 53–68 (1993)CrossRefGoogle Scholar
  8. 8.
    Devi, B.V.A., Priyadharsini, S.S.: Sdiagnosis of neuromuscular disorders using softcomputing techniques. International Journal of Soft Computing and Engineering 3(5), 105–111 (2013)Google Scholar
  9. 9.
    Kaczorek, T.: Selected Problems of Fractional Systems Theory. LNCIS, vol. 411. Springer, Berlin (2011)zbMATHGoogle Scholar
  10. 10.
    Kawala-Janik, A.: Efficiency Evaluation of External Environments Control Using Bio-Signals. PhD thesis, University of Greenwich (2013)Google Scholar
  11. 11.
    Kawala-Janik, A., Podpora, M., Baranowski, J., Bauer, W., Pelc, M.: Innovative approach in analysis of eeg and emg signals? comparision of the two novel methods. In: 2014 19th International Conference on Methods and Models in Automation and Robotics, MMAR (accepted, 2014)Google Scholar
  12. 12.
    Kawala-Janik, A., Podpora, M., Pelc, M., Baranowski, J., Pąitek, P.: Implementation of an inexpensive eeg headset for the pattern recognition purpose. In: The 7th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (2013)Google Scholar
  13. 13.
    Michell, A.W.: Understanding EMG. Oxford University Press (2013)Google Scholar
  14. 14.
    Ozsert, M., Yavuz, O., Durak-Ata, L.: Analysis and classification of compressed emg signals by wavelet transform via alternative neural networks algorithms. Computer Methods in Biomechanics and Biomedical Engineering 14, 521–525 (2011)CrossRefGoogle Scholar
  15. 15.
    Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for emg signal classification. Expert Systems with Applications 39(8), 7420–7431 (2012)CrossRefGoogle Scholar
  16. 16.
    Piątek, P., Baranowski, J.: Investigation of Fixed-Point Computation Influence on Numerical Solutions of Fractional Differential Equations. Acta Mechanica et Automatica 5(2), 101–107 (2011)Google Scholar
  17. 17.
    Scheme, E., Lock, B., Hargrove, L., Hill, W., Uruganti, U., Englehart, K.: Motion normalized proportional control for improved pattern recognition-based myoelectric control. IEEE Transactions on Neural Systems and Rehabilitation Engineering 22(1), 149–157 (2014)CrossRefGoogle Scholar
  18. 18.
    Sikdar, S., Eastlake, H.R.E.B., Hunt, I.A., Nelson, A.J., Devanathan, J., Shin, A., Pancrazio, J.J.: Novel method for predicting dexterous individual finger movements by imaging muscle activity using a wearable ultrasonic system. IEEE Transactions on Neural Systems and Rehabilitation Engineering 22(1), 69–76 (2014)CrossRefGoogle Scholar
  19. 19.
    Subasi, A.: Classification of emg signals using combined features and soft computing techniques. Applied Soft Computing 12(8), 2188–2198 (2012)CrossRefGoogle Scholar
  20. 20.
    Wojtczak, P., Amaral, T.G., Dias, O.P., Wolczowski, A., Kurzynski, M.: Hand movement recognition based on biosignal analysis. Engineering Applications of Artificial Intelligence 22, 608–615 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jerzy Baranowski
    • 1
  • Paweł Piątek
    • 1
  • Aleksandra Kawala-Janik
    • 2
  • Marta Zagórowska
    • 1
  • Waldemar Bauer
    • 1
  • Tomasz Dziwiński
    • 1
  1. 1.Department of Automatics and Biomedical EngineeringAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of Electrical Engineering, Automatic Control and InformaticsOpole University of TechnologyOpolePoland

Personalised recommendations