Advertisement

Lyapunov Direct Method for Non-integer Order Systems

  • Marta Zagórowska
  • Jerzy Baranowski
  • Waldemar Bauer
  • Tomasz Dziwiński
  • Paweł Piątek
  • Wojciech Mitkowski
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 320)

Abstract

In this paper an extension of Lyapunov direct method for non-integer order systems is presented. It allows to analyse a special case of classic stability theory - the Mittag-Leffler stability. However, there are some differences that are worth considering. Some of them are analysed in presented examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lyapunov function method: Non-integer order case. In: Materiały XXXVII Międzynarodowej konferencji z podstaw elektrotechniki i teorii obwodów IC-SPETO (2014)Google Scholar
  2. 2.
    Bania, P., Baranowski, J.: Laguerre polynomial approximation of fractional order linear systems. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Theory & Appl. of Non-integer Order Syst. LNEE, vol. 257, pp. 171–182. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Bauer, W., Baranowski, J., Mitowski, W.: Non-integer order PIαDμ control ICU-MM. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Theory & Appl. of Non-integer Order Syst. LNEE, vol. 257, pp. 295–303. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Dziwiński, T., Bauer, W., Baranowski, J., Piąktek, P., Zagórowska, M.: Robust non-integer order controller for air heater. In: 2014 19th International Conference on Methods and Models in Automation and Robotics, MMAR (accepted 2014)Google Scholar
  5. 5.
    Kaczorek, T.: Selected Problems of Fractional Systems Theory. LNCIS, vol. 411. Springer, Berlin (2011)zbMATHGoogle Scholar
  6. 6.
    Kawala-Janik, A., Podpora, M., Baranowski, J., Bauer, W., Pelc, M.: Innovative approach in analysis of eeg and emg signals? comparision of the two novel methods. In: 2014 19th International Conference on Methods and Models in Automation and Robotics, MMAR (accepted 2014)Google Scholar
  7. 7.
    Li, Y., Chen, Y., Podlubny, I.: Mittag–leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag–leffler stability. Computers & Mathematics with Applications 59(5), 1810–1821 (2010), Fractional Differentiation and Its ApplicationsGoogle Scholar
  9. 9.
    Mitkowski, W.: Remarks about fractional metzler systems. In: Busłowicz, M., Malinowski, K. (eds.) Advances in Control Theory and Automation: Mono- graph Dedicated to Professor Tadeusz Kaczorek in the Occasion of his Eightieth Birthday. Printing House of Białystok University of Technology, Białystok (2012)Google Scholar
  10. 10.
    Piątek, P., Baranowski, J.: P. Piątek and J. Baranowski. Investigation of Fixed-Point Computation Influence on Numerical Solutions of Fractional Differential Equations. Acta Mechanica et Automatica 5(2), 101–107 (2011)Google Scholar
  11. 11.
    Skruch, P., Mitkowski, W.: Fractional-order models of the ultracapacitors. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Theory & Appl. of Non-integer Order Syst. LNEE, vol. 257, pp. 281–293. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marta Zagórowska
    • 1
  • Jerzy Baranowski
    • 1
  • Waldemar Bauer
    • 1
  • Tomasz Dziwiński
    • 1
  • Paweł Piątek
    • 1
  • Wojciech Mitkowski
    • 1
  1. 1.Department of Automatics and Biomedical EngineeringAGH University of Science and TechnologyKrakówPoland

Personalised recommendations