Skip to main content

Neuronal Morphology Modeling Based on Microscopy Reconstruction Data in the Public Repositories

  • Conference paper
  • 1675 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8609)

Abstract

Neuronal morphology modeling is one of the key steps for reverse engineering the brain at the micro level. It creates a realistic digital version of the neuron obtained by microscopy reconstruction in a visualized way so that the structure of the whole neuron (including soma, dendrite, axon, spin, etc.) is visible in different angles in a three dimensional space. Whether the modeled neuronal morphology matches the original neuron in vivo is closely related to the details captured by the manually sampled morphological points. Many data in public neuronal morphology data repositories (such as the NeuroMorpho project) focus more on the morphology of dendrites and axons, while there are only a few points to represent the neuron soma. The lack of enough details for neuron soma makes the modeling on the soma morphology a challenging task. In this paper, we provide a general method to neuronal morphology modeling (including the soma and its connections to surrounding dendrites, and axons, with a focus on how different components are connected) and handle the challenging task when there are not many detailed sample points for soma.

Keywords

  • Neuron Morphology Reconstruction
  • Neuronal Morphology Modeling
  • Soma Reconstruction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-09891-3_1
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-09891-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perry, W., Broers, A., El-Baz, F., Harris, W., Healy, B., Hillis, W.D., et al.: Grand challenges for engineering. National Academy of Engineering, Washington, DC (2008)

    Google Scholar 

  2. Grand Challenges: Reverse-engineering the Brain. National Academy of Engineering, http://www.engineeringchallenges.org/cms/8996/9109.aspx

  3. The Human Brain Project: A Report to the European Commission (2012)

    Google Scholar 

  4. Zhong, N., Bradshaw, J.M., Liu, J., Taylor, J.G.: Brain Informatics. IEEE Intelligent Systems 26(5), 16–21 (2011)

    CrossRef  Google Scholar 

  5. Cauwenberghs, G.: Reverse engineering the cognitive brain. Proceedings of the National Academy of Sciences 110(39), 15512–15513 (2013)

    CrossRef  Google Scholar 

  6. Cannon, R.C., Turner, D.A., Pyapali, G.K., Wheal, H.V.: An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods 84(1-2), 49–54 (1998)

    CrossRef  Google Scholar 

  7. Halavi, M., Polavaram, S., Donohue, D.E., Hamilton, G., Hoyt, J., Smith, K.P., et al.: NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration with the NIF. Neuroinformatics 6(3), 241–252 (2008)

    CrossRef  Google Scholar 

  8. Brito, J.P., Mata, S., Bayona, S., Pastor, L., Defelipe, J., Benavides-Piccione, R.: Neuronize: a tool for building realistic neuronal cell morphologies. Frontiers in Neuroanatomy 7(15) (2013)

    Google Scholar 

  9. Zerouni, C.: Houdini on the Spot: Power User Tips and Techniques. Focal Press (2007)

    Google Scholar 

  10. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Seminal graphics, pp. 183–188. ACM (1998)

    Google Scholar 

  11. Shreiner, D., Sellers, G., Kessenich, J.M., Licea-Kane, B.M.: OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.3, 8th edn. Addison-Wesley Professional (2013)

    Google Scholar 

  12. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)

    CrossRef  Google Scholar 

  13. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deform-able models in computer graphics. Comput. Graph. Forum 25(4), 809–836 (2006)

    CrossRef  Google Scholar 

  14. Lasserre, S., Hernando, J., Hill, S., Schumann, F., Anasagasti, P.M., Jaoude, G.A., et al.: A neuron membrane mesh representation for visualization of electrophysiological simulations. IEEE Transactions on Visualization and Computer Graphics 18(2), 214–227 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zeng, Y., Bi, W., Tang, X., Xu, B. (2014). Neuronal Morphology Modeling Based on Microscopy Reconstruction Data in the Public Repositories. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)