Handling Label Noise in Microarray Classification with One-Class Classifier Ensemble

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 311)


The advance of high-throughput techniques, such as gene microarrays and protein chips have a major impact on contemporary biology and medicine. Due to the high-dimensionality and complexity of the data, it is impossible to analyze it manually. Therefore machine learning techniques play an important role in dealing with such data. In this paper, we investigate the influence of label noise on the effectiveness of classification system applied to microarray analysis. Popular methods do not have any mechanism for handling such difficulties embedded in the nature of data. To cope with that, we propose to use a one-class classifiers, which distinct from canonical methods, rely on objects coming from single class distributions only. They distinguish observations coming from the given class from any other possible decision about the examples, that were unseen during the classification step. While having less information to dichotomize between classes, one-class models can easily learn the specific properties of a given data set and are robust to difficulties embedded in the nature of the data. We show, that using ensembles of one-class classifiers can give as good results as canonical multi-class classifiers, while allowing to deal with unexpected label noise in the data. Experimental investigations, carried out on public data sets, prove the usefulness of the proposed approach.


classifier ensemble pattern classification one-class classifier bioinformatics microarray label noise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tinker, A.V., Boussioutas, A., Bowtell, D.D.L.: The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 9(5), 333–339 (2006)CrossRefGoogle Scholar
  2. 2.
    Silveira, V.S., Scrideli, C.A., Moreno, D.A., Yunes, J.A., Queiroz, R.G.P., Toledo, S.C., Lee, M.L.M., Petrilli, A.S., Brandalise, S.R., Tone, L.G.: Gene expression pattern contributing to prognostic factors in childhood acute lymphoblastic leukemia. Leukemia and Lymphoma 54(2), 310–314 (2013)CrossRefGoogle Scholar
  3. 3.
    Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga-Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., Fuhlbrigge, R.C., Kupper, T.S., Sayegh, M.H., Frank, M.H.: Identification of cells initiating human melanomas. Nature 451(7176), 345–349 (2008)CrossRefGoogle Scholar
  4. 4.
    Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., Hallett, M., Park, M.: Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine 14(5), 518–527 (2008)CrossRefGoogle Scholar
  5. 5.
    Lynch, C.C., Hikosaka, A., Acuff, H.B., Martin, M.D., Kawai, N., Singh, R.K., Vargo-Gogola, T.C., Begtrup, J.L., Peterson, T.E., Fingleton, B., Shirai, T., Matrisian, L.M., Futakuchi, M.: Mmp-7 promotes prostate cancer-induced osteolysis via the solubilization of rankl. Cancer Cell 7(5), 485–496 (2005)CrossRefGoogle Scholar
  6. 6.
    Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armananzas, R., Santaf, G., Perez, A., Robles, V.: Machine learning in bioinformatics. Briefings in Bioinformatics 7(1), 86–112 (2006)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Yu, Z., Anh, V.: Fuzzy c-means method with empirical mode decomposition for clustering microarray data. International Journal of Data Mining and Bioinformatics 7(2), 103–117 (2013)CrossRefGoogle Scholar
  8. 8.
    Ringner, M., Peterson, C., Khan, J.: Analyzing array data using supervised methods. Pharmacogenomics 3(3), 403–415 (2002),; cited By 43 (since 1996)
  9. 9.
    Bariamis, D., Maroulis, D., Iakovidis, D.K.: Unsupervised svm-based gridding for dna microarray images. Computerized Medical Imaging and Graphics 34(6), 418–425 (2010)CrossRefGoogle Scholar
  10. 10.
    Woźniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Information Fusion 16, 3–17 (2014)CrossRefGoogle Scholar
  11. 11.
    Moorthy, K., Mohamad, M.S.: Random forest for gene selection and microarray data classification. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds.) KTW 2011. CCIS, vol. 295, pp. 174–183. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Liu, K., Huang, D.: Cancer classification using rotation forest. Computers in Biology and Medicine 38(5), 601–610 (2008)CrossRefGoogle Scholar
  13. 13.
    Inza, I., Larraaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene selection approaches in dna microarray domains. Artificial Intelligence in Medicine 31(2), 91–103 (2004)CrossRefGoogle Scholar
  14. 14.
    Krawczyk, B.: Combining one-class support vector machines for microarray classification. In: FedCSIS, pp. 83–89 (2013)Google Scholar
  15. 15.
    Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)CrossRefGoogle Scholar
  16. 16.
    Noto, K., Brodley, C., Slonim, D.: Frac: A feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Mining and Knowledge Discovery 25(1), 109–133 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Tax, D.M.J., Juszczak, P., Pękalska, E.z., Duin, R.P.W.: Outlier detection using ball descriptions with adjustable metric. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR&SPR 2006. LNCS, vol. 4109, pp. 587–595. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Schölkopf, B., Smola, A.: Learning with kernels: support vector machines, regularization, optimization, and beyond. In: Adaptive Computation and Machine Learning. MIT Press (2002)Google Scholar
  19. 19.
    Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54(1), 45–66 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Bicego, M., Figueiredo, M.A.T.: Soft clustering using weighted one-class support vector machines. Pattern Recognition 42(1), 27–32 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wilk, T., Woźniak, M.: Soft computing methods applied to combination of one-class classifiers. Neurocomput. 75, 185–193 (2012)CrossRefGoogle Scholar
  22. 22.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations