Advertisement

Migraine Diagnosis Support System Based on Classifier Ensemble

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 311)

Abstract

A valid diagnosis of migraine is a non-trivial decision problem. This is due to the fact that migraine can manifest wide range of varied symptoms. Thus, designing a computer aided diagnosis system for that problem remains still a very interesting topic. In this paper we present an ensemble classifier system designed for headache diagnosis. We assumed that the system should make fast initial diagnosis based on an analysis of data collected in the questionnaire only. Such an assumption eliminated possibility of application of most classical classification algorithms as they could not obtain decent level of accuracy. Therefore, we decided to apply an ensemble solution. Although it is clear that ensemble should consists of complementary classifiers, there is no guidance on how to choose ensemble size and ensure its diversity. Thus, we applied two stages strategy. Firstly, large pool of elementary classifiers were prepared. Its diversity was ensured by selecting algorithms of different types, structures, and learning algorithms. Secondly, we determined optimal size of the ensemble and selected its constituents using exhaustive search approaches. Results of experiments, which were carried on dataset collected in University of Novi Sad, shows that proposed system significantly outperformed all classical methods. Additionally we present analysis of diversity and accuracy correlation for tested systems.

Keywords

ensemble classifier systems medical diagnosis support system headache diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press (1998)Google Scholar
  2. 2.
    Simi, S., Simi, D., Cvijanovi, M.: Clinical and socio-demographic characteristics of tension type headache in working population. HealthMED 6(4), 1341–1347 (2012)Google Scholar
  3. 3.
    Olesen, J., Goadsby, P.J., Ramadan, N.M., Tfelt-Hansen, P., Welch, K., Michael, A.: The Headaches, 3rd edn. Lippincott Williams & Wilkins (2005)Google Scholar
  4. 4.
    Brown, M.R.: The classification and treatment of headache. Medical Clinics of North America 35(5), 1485–1493 (1951); PMID 14862569Google Scholar
  5. 5.
    Ad Hoc Committee on Classification of Headache. Classification of Headache. JAMA 179 (1962), doi:10.1001/jama.1962.03050090045008Google Scholar
  6. 6.
    Vos, T.: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380 (2012), doi:10.1016/S0140-6736(12)61729-2; PMID 23245607Google Scholar
  7. 7.
    MacGregor, E.A., Hackshaw, A.: Prevalence of migraine on each day of the natural menstrual cycle. Neurolog 63(2), 351–353 (2004)CrossRefGoogle Scholar
  8. 8.
    Jain, A.K., Duin, P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Trans. on PAMI 22(1), 4–37 (2000)CrossRefGoogle Scholar
  9. 9.
    Ruta, D., Gabrys, B.: Classifier Selection for Majority Voting. Information Fusion 6, 63–81 (2005)CrossRefGoogle Scholar
  10. 10.
    Wozniak, M., Jackowski, K.: Some Remarks on Chosen Methods of Classifier Fusion Based on Weighted Voting. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 541–548. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kuncheva, L.I.: Combining pattern classifiers: Methods and algorithms. Wiley-Interscience, New Jersey (2004)CrossRefGoogle Scholar
  12. 12.
    Kuncheva, L.I., Whitaker, C.J.: Ten measures of diversity in classifier ensembles: Limits for two classifiers. In: IEE Workshop on Intelligent Sensor Processing, Birmingham, pp. 10/1–10/6 (2001)Google Scholar
  13. 13.
    Krzanowski, W., Partrige, D.: Software Diversity: Practical Statistics for its Measurement and Exploatation. Raport University of Exeter, Department of Computer Science (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IT4InnovationsVSB – Technical University of OstravaOstrava - PorubaCzech Republic
  2. 2.Department of Systems and Computer NetworksWroclaw University of TechnologyWrocławPoland
  3. 3.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  4. 4.Faculty of MedicineUniversity of Novi SadNovi SadSerbia

Personalised recommendations